scholarly journals Electrospun flexible self-standing Cu–Al2O3 fibrous membranes as Fenton catalysts for bisphenol A degradation

2017 ◽  
Vol 5 (36) ◽  
pp. 19151-19158 ◽  
Author(s):  
Yan Wang ◽  
Jiang Li ◽  
Jianyang Sun ◽  
Yanbin Wang ◽  
Xu Zhao

Flexible Cu–Al2O3 membranes with high Fenton catalytic performance have been fabricated via electrospinning technique.

2018 ◽  
Vol 347 ◽  
pp. 731-740 ◽  
Author(s):  
Yuxin Liu ◽  
Rui Luo ◽  
Yang Li ◽  
Junwen Qi ◽  
Chaohai Wang ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Ioanna Savva ◽  
George Krekos ◽  
Alina Taculescu ◽  
Oana Marinica ◽  
Ladislau Vekas ◽  
...  

Magnetoresponsive polymer-based fibrous nanocomposites belonging to the broad category of stimuli-responsive materials, is a relatively new class of “soft” composite materials, consisting of magnetic nanoparticles embedded within a polymeric fibrous matrix. The presence of an externally applied magnetic field influences the properties of these materials rendering them useful in numerous technological and biomedical applications including sensing, magnetic separation, catalysis and magnetic drug delivery. This study deals with the fabrication and characterization of magnetoresponsive nanocomposite fibrous membranes consisting of methacrylic random copolymers based on methyl methacrylate (MMA) and 2-(acetoacetoxy)ethyl methacrylate (AEMA) (MMA-co-AEMA) and oleic acid-coated magnetite (OA·Fe3O4) nanoparticles. The AEMA moieties containingβ-ketoester side-chain functionalities were introduced for the first time in this type of materials, because of their inherent ability to bind effectively onto inorganic surfaces providing an improved stabilization. For membrane fabrication the electrospinning technique was employed and a series of nanocomposite membranes was prepared in which the polymer content was kept constant and only the inorganic (OA·Fe3O4) content varied. Further to the characterization of these materials in regards to their morphology, composition and thermal properties, assessment of their magnetic characteristics disclosed tunable superparamagnetic behaviour at ambient temperature.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 54
Author(s):  
Zeman Liu ◽  
Yiqi Wang ◽  
Fei Guo

Fibrous membranes with a nonwoven random structure and a quasi-parallel fibrous structure can be fabricated by the electrospinning technique. The membranes with different structures exhibited different behaviors to a hydraulic flow passing through the membranes. This work presents the effects of the fiber arrangement, fiber diameter, and deformations of the fibers on the hydraulic permeability. The results showed that the hydraulic flow can generate an extrusion pressure which affects the porosity and pore structure of the fibrous membranes. The quasi-parallel fibrous membranes and nonwoven membranes exhibited similar variation tendencies to the change of the experimental variables. However, the quasi-parallel fibrous membranes exhibited a higher sensibility to the change of the hydraulic flow rate. The hydraulic permeability of the quasi-parallel fibrous membranes was further analyzed with packing state models in this work.


Nanomaterials ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 7 ◽  
Author(s):  
Noelia Losada-Garcia ◽  
Alba Rodriguez-Otero ◽  
Jose M. Palomo

Copper nanoparticles–enzyme biohybrid is a promising material for the remediation of contaminated waters, but its function is influenced by its effect on degradation organic pollutants. This study is the first investigation into the fast degradation of a high amount of Bisphenol A (BPA) in water at neutral pH and room temperature. Four different CuNPs biohybrids with different cu species and nanoparticle sizes were used as catalysts. The biohybrid CuNPs@CALB-3, which contained Cu2O nanoparticles of around 10 nm size, showed excellent catalytic performance removing >95% BPA content (45 ppm) in an aqueous solution in 20 min in the presence of hydrogen peroxide at pH 8 using 1.5 g/L of a catalyst. The catalyst showed excellent stability and recyclability at these conditions.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 724 ◽  
Author(s):  
Yongkui Huang ◽  
Shuangwu Kou ◽  
Xiaoting Zhang ◽  
Lei Wang ◽  
Peili Lu ◽  
...  

The rational fabrication of direct Z-scheme heterostructures photocatalysts is a pivotal strategy to boost the interfacial charge migration and separation. Herein, direct Z-scheme Bi2WO6/WO3 composites were rationally fabricated for the degradation of bisphenol A combined with the activation of peroxymonosulfate (PMS). The tight interface contact between Bi2WO6 and WO3 was successfully formed by the in situ epitaxial growth of ultrathin Bi2WO6 nanosheets at the surface of WO3 nanorods. The Bi2WO6/WO3 composite presented highly efficient catalytic performance toward degradation of BPA with PMS activation as compared to the WO3 and Bi2WO6. PMS can dramatically boost the photocatalytic activity of the composites. Moreover, the results of active radical scavenging experiments revealed that h+, •O2−, and •SO4− are critical active species in the photodegradation reaction. Finally, the photocatalytic mechanism for the degradation of BPA is also discussed in detail. The great improvement of photocatalytic performance should be ascribed to the effective formation of the direct Z-scheme heterojunctions between Bi2WO6 and WO3, resulting in improved light absorption, an efficient transfer and separation of photoinduced charge carriers, and a considerable amount of the electrons and holes with strong reduction and oxidation abilities. The study might provide new inspirations to design and construct heterostructured nanomaterials with outstanding photoactivity for environmental remediation.


2011 ◽  
Vol 675-677 ◽  
pp. 465-468 ◽  
Author(s):  
Yong Rong Wang ◽  
Pei Hua Zhang ◽  
Chun Ye Xu

Piezoelectric polymer, polyvinylidene fluoride (PVDF) film, has been widely investigated as sensor and transducer material due to its high piezo-, pyro-, and ferroelectric properties. However, there are many limitations for PVDF film as human-related tactile sensor, such as non-breathability, stretching, requirement of additional process like poling, etc. In this paper, PVDF nano-fibrous membrane which is light, flexible, and wearable was prepared by electrospinning technique. The electrospinning parameters such as the voltage, feeding rate, tip-tocollector distance, etc, were well controlled. More than 4 hours electrospinning time was needed for a certain thickness of PVDF nano-fibrous membrane. The morphology of PVDF nanofiber was determined by scanning electron microscopy (SEM), the diameter distribution was calculated and crystal structure was evaluated by FTIR spectroscopy. We found the feasibility of developing piezoelectric PVDF fibrous membranes through electrospinning technology, which is a good candidate for flexible human-related tactile sensors to sense garment pressure, blood pressure, heartbeat rate, accidental external impact on human body, etc.


2017 ◽  
Vol 14 (2) ◽  
pp. 115 ◽  
Author(s):  
Xiaoying Wang ◽  
Yijie Wang ◽  
Meng Jiang ◽  
Yanqun Shan ◽  
Xiaobing Wang

Environmental contextBisphenol A is an endocrine disruptor, which may migrate and transfer to the environment where it presents a potential risk to the health of humans and animals. Herein, we demonstrate that electrospun nanofibers could be used to develop a highly efficient solid-state quenching sensor for on-site determination of bisphenol A in river water samples. The strategy has great potential for routine environmental analyses. AbstractA novel solid-state electrochemiluminescence (ECL) quenching sensor based on luminescent composite nanofibres for detection of bisphenol A (BPA) has been designed. Luminescent composite nanofibres of ruthenium(ii) tris(bipyridine) (Ru(bpy)32+)-doped core–shell Cu@Au alloy nanoparticles (Ru/Cu@Au) mixed with nylon 6 (PA6)–amino-functionalised multi-walled carbon nanotubes (MWCNTs), Ru/Cu@Au-MWCNTs-PA6, were successfully fabricated by a one-step electrospinning technique. The Ru/Cu@Au-MWCNTs-PA6 nanofibres, with a unique 3D nanostructure, large specific surface area and double Ru(bpy)32+-ECL signal amplification, exhibited excellent ECL photoelectric behaviours on a glassy carbon electrode. As a solid-state ECL sensor, the Ru/Cu@Au-MWCNTs-PA6 nanofibres can sensitively detect low concentrations of BPA by monitoring the BPA-dependent ECL intensity change. The detection limit for BPA is 10 pM, which is comparable or better than that in the reported assays. The sensor was successfully applied to on-site determination of BPA in river water samples obtained from eight different sampling sites with good recovery, ranging from 97.8 to 103.4%. The solid-state ECL sensor displayed wide-range linearity, high sensitivity and good stability, and has great potential in the field of environmental analyses.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Loredana Tammaro ◽  
Giuseppina Russo ◽  
Vittoria Vittoria

Mg-Al Hydrotalcite-like clay (LDH) intercalated with diclofenac anions (HTlc-DIC) was introduced into poly(-caprolactone) (PCL) in different concentrations by the electrospinning technique, and mats of nonwoven fibers were obtained and compared to the pristine pure electrospun PCL. The fibers, characterized by X-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry, show an exfoliated clay structure up to 3 wt%, a good thermal stability of the diclofenac molecules and a crystallinity of PCL comparable to the pure polymer. The scanning electron microscopy revealed electrospun PCL and PCL composite fibers diameters ranging between 500 nm to 3.0 m and a generally uniform thickness along the fibers. As the results suggested the in vitro drug release from the composite fibers is remarkably slower than the release from the corresponding control spun solutions of PCL and diclofenac sodium salt. Thus, HTlc-DIC/PCL fibrous membranes can be used as an antinflammatory scaffold for tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document