Axial resolution and contrast enhancement in digital scanned light-sheet microscopy via stimulated emission depletion

2020 ◽  
Vol 22 (10) ◽  
pp. 105301
Author(s):  
Suhui Deng ◽  
Xianhong Li ◽  
Zijun Ding ◽  
Yulong Zhang ◽  
Mingping Liu ◽  
...  
2020 ◽  
Vol 11 (2) ◽  
pp. 660 ◽  
Author(s):  
José Martínez Hernández ◽  
Alain Buisson ◽  
Irène Wang ◽  
Jean-Claude Vial

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Luis Köbele ◽  
Alexander Rohrbach

Abstract Microscopy seeks to simultaneously maximize optical resolution, contrast, speed, volume size, and probe tolerability, which is possible by combining different complementary imaging techniques with their specific strengths. Here, we show how to combine three physical concepts to increase resolution and contrast in light-sheet microscopy by making the effective light-sheet thinner through phase shaping, fluorophores-switching, and dynamic blocking of fluorescence. This shape-switch-block principle is realized by illumination with two holographically shaped, sectioned Bessel beams. Second, by switching off fluorophores in the proximity of the excitation center using continuous-wave stimulated emission depletion (STED). And third, by blocking fluorescence outside the switching region by confocal line detection. Thereby, we reduce the light-sheet thickness by 35%, achieving an isotropic resolution with beads in a 300 × 70 × 50 µm³ volume. Without STED, we obtain 0.37 µm resolution in cell clusters at improved sectioning and penetration depth. The shape-switch-block concept promises high potential, also for other microscopy techniques.


Development ◽  
2021 ◽  
Author(s):  
Mostafa Aakhte ◽  
H.-Arno J. Müller

Light sheet or selective plane illumination microscopy (SPIM) is ideally suited for in toto imaging of living specimens at high temporal-spatial resolution. In SPIM, the light scattering that occurs during imaging of opaque specimens brings about limitations in terms of resolution and the imaging field of view. To ameliorate this shortcoming, the illumination beam can be engineered into a highly confined light sheet over a large field of view and multi-view imaging can be performed by applying multiple lenses combined with mechanical rotation of the sample. Here, we present a Multiview tiling SPIM (MT-SPIM) that combines the Multi-view SPIM (M-SPIM) with a confined, multi-tiled light sheet. The MT-SPIM provides high-resolution, robust and rotation-free imaging of living specimens. We applied the MT-SPIM to image nuclei and Myosin II from the cellular to subcellular spatial scale in early Drosophila embryogenesis. We show that the MT-SPIM improves the axial-resolution relative to the conventional M-SPIM by a factor of two. We further demonstrate that this axial resolution enhancement improves the automated segmentation of Myosin II distribution and of nuclear volumes and shapes.


2021 ◽  
Author(s):  
Stefan Wunderl ◽  
Ayumu Ishijima ◽  
Etsuo Susaki ◽  
Zihui Xu ◽  
Hong Song ◽  
...  

Light-sheet imaging of 3D objects with high spatial resolution remains an open challenge because of the trade-off between field-of-view (FOV) and axial resolution originating from the diffraction of light. We developed acoustic light-sheet microscopy (acoustic LSM), which actively manipulates the light propagation inside a large sample to obtain wide-field microscopic images deep inside a target. By accurately coupling a light-sheet illumination pulse into a planar acoustic pulse, the light-sheet can be continuously guided over large distances. We imaged a fluorescence-labeled transparent mouse brain for the FOVs of 19.3 x 12.4 mm2 and 9.7 x 5.9 mm2 with resolved microstructures and single cells deep inside the brain. Acoustic LSM creates new opportunities for the application of light-sheet in the field of industry to basic science.


2018 ◽  
Vol 12 (1) ◽  
pp. e201800094 ◽  
Author(s):  
Hao Jia ◽  
Xianghua Yu ◽  
Yanlong Yang ◽  
Xing Zhou ◽  
Shaohui Yan ◽  
...  

2021 ◽  
Author(s):  
Mostafa Aakhte ◽  
Hans-Arno J Mueller

Light sheet or selective plane illumination microscopy (SPIM) is ideally suited for in toto imaging of living specimens at high temporal-spatial resolution. In SPIM, the light scattering that occurs during imaging of opaque specimens brings about limitations in terms of resolution and the imaging field of view. To ameliorate this shortcoming, the illumination beam can be engineered into a highly confined light sheet over a large field of view and multi-view imaging can be performed by applying multiple lenses combined with mechanical rotation of the sample. Here, we present a Multiview tiling SPIM (MT-SPIM) that combines the Multi-view SPIM (M-SPIM) with a confined, multi-tiled light sheet. The MT-SPIM provides high-resolution, robust and rotation-free imaging of living specimens. We applied the MT-SPIM to image nuclei and Myosin II from the cellular to subcellular spatial scale in early Drosophila embryogenesis. We show that the MT-SPIM improves the axial-resolution relative to the conventional M-SPIM by a factor of two. We further demonstrate that this axial resolution enhancement improves the automated segmentation of Myosin II distribution and of nuclear volumes and shapes.


2019 ◽  
Vol 11 (1) ◽  
pp. 8 ◽  
Author(s):  
Elena Remacha ◽  
Lars Friedrich ◽  
Julien Vermot ◽  
Florian O. Fahrbach

Sign in / Sign up

Export Citation Format

Share Document