Simultaneous multiple-level magnification selective plane illumination microscopy (sMx-SPIM) imaging system

2021 ◽  
Author(s):  
Rinsa S R ◽  
Kripa Chitre ◽  
Aditya Kurup ◽  
Upendra Nongthomba ◽  
Srinivasa Murty Srinivasula ◽  
...  

Abstract We report an optical-based (microscopy) imaging technology – Simultaneous Multiple-level Magnification Selective Plane Illumination Microscopy (sMx-SPIM) Imaging System – that addresses a longstanding (technological) challenge of obtaining images, specifically of the biological specimen non-destructively, at different fields of view (FOV) and spatial resolutions (or magnification powers) simultaneously in real-time. Thus, this imaging system provides not only 3D images but also time-resolved sequential images with temporal resolution msecs. Magnification powers (or FOVs) of the individual images can be controlled independently that can be achieved by housing two separate detection arms, in SPIM imaging system, fitted with objective lenses of different magnification powers. These unique features hold promises to observe and study of: (i) sub-microscopic details and entire structure of biological specimen side-by-side simultaneously and (ii) spatio-temporal dynamics of functional activities of biological specimen. For validation study of robustness of the proposed sMx-SPIM imaging system, experiments are conducted in various biological samples (zebrafish embryo, Drosophila melanogaster, and Allium cepa root). Experimental results demonstrate that the study is of significant impacts from two aspects (technological and biological applications).

2018 ◽  
Author(s):  
Amelia J. Thompson ◽  
Iva K. Pillai ◽  
Ivan B. Dimov ◽  
Christine E. Holt ◽  
Kristian Franze

AbstractTissue mechanics is important for development; however, the spatio-temporal dynamics of in vivo tissue stiffness is still poorly understood. We here developed tiv-AFM, combining time-lapse in vivo atomic force microscopy with upright fluorescence imaging of embryonic tissue, to show that in the developing Xenopus brain, a stiffness gradient evolves over time because of differential cell proliferation. Subsequently, axons turn to follow this gradient, underpinning the importance of time-resolved mechanics measurements.


2007 ◽  
Vol 73 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Uwe Rascher ◽  
Caroline J. Nichol ◽  
Christopher Small ◽  
Leif Hendricks

2019 ◽  
Author(s):  
Yuki Takamatsu ◽  
Takeshi Noda ◽  
Stephan Becker

AbstractLive-cell imaging is a powerful tool for visualization of the spatio-temporal dynamics of living organisms. Although this technique is utilized to visualize nucleocapsid transport in Marburg virus (MARV)- or Ebola virus-infected cells, the experiments require biosafety level-4 (BSL-4) laboratories, which are restricted to trained and authorized individuals. To overcome this limitation, we developed a live-cell imaging system to visualize MARV nucleocapsid-like structures using fluorescence-conjugated viral proteins, which can be conducted outside BSL-4 laboratories. Our experiments revealed that nucleocapsid-like structures have similar transport characteristics to nucleocapsids observed in MARV-infected cells. This system provides a safe platform to evaluate antiviral drugs that inhibit MARV nucleocapsid transport.


2019 ◽  
Author(s):  
Dmitry Kondrik ◽  
Eduard Kazakov ◽  
Svetlana Chepikova ◽  
Dmitry Pozdnyakov

Abstract. Producing very extensive blooms in the world's oceans in both hemispheres, a coccolithophore E. huxleyi is capable of affecting both the marine ecology and carbon fluxes at the atmosphere-ocean interface. At the same time, it is subject to the impact of multiple co-acting environmental forcings, which determine the spatio-temporal dynamics of E. huxleyi blooming phenomenon. To reveal the individual importance of each forcing factor (FF) that is known to significantly control the extent and intensity of E. huxleyi blooms and can be retrieved from remote sensing data, we used long-term spatial time series (1998–2016) of sea surface temperature and salinity, incident photosynthetically active radiation, and Ekman layer depth relevant to the marine environments located in the North Atlantic, Arctic and North Pacific oceans, namely the North, Norwegian, Greenland, Labrador, Barents and Bering seas. The FFs retrieved were subjected to statistical analyses. The descriptive statistical approach has shown that E. huxleyi phytoplankton were highly adaptive to the environmental conditions and capable of arising and developing within wide FFs ranges, which proved to be expressly sea-specific. It was also found that there were FFs optimal ranges (also sea-specific), within which the blooms were particularly extensive. The application of the Random Forest Classifier (RFC) approach to each target sea allowed to reliably rank the FFs considered in terms of their role in the spatio-temporal dynamics of E. huxleyi blooms. With the only exception of the Bering Sea, allegedly due to temporally established untypical hydrological conditions, the prediction ability of RFC modeling characterized in terms of precision, recall, and f1-score generally was in excess of 70 %, thus indicating the adequacy of the developed models for FFs prioritization with regard to E. huxleyi blooms.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Amelia J Thompson ◽  
Eva K Pillai ◽  
Ivan B Dimov ◽  
Sarah K Foster ◽  
Christine E Holt ◽  
...  

Tissue mechanics is important for development; however, the spatio-temporal dynamics of in vivo tissue stiffness is still poorly understood. We here developed tiv-AFM, combining time-lapse in vivo atomic force microscopy with upright fluorescence imaging of embryonic tissue, to show that during development local tissue stiffness changes significantly within tens of minutes. Within this time frame, a stiffness gradient arose in the developing Xenopus brain, and retinal ganglion cell axons turned to follow this gradient. Changes in local tissue stiffness were largely governed by cell proliferation, as perturbation of mitosis diminished both the stiffness gradient and the caudal turn of axons found in control brains. Hence, we identified a close relationship between the dynamics of tissue mechanics and developmental processes, underpinning the importance of time-resolved stiffness measurements.


2020 ◽  
Vol 637 ◽  
pp. 117-140 ◽  
Author(s):  
DW McGowan ◽  
ED Goldstein ◽  
ML Arimitsu ◽  
AL Deary ◽  
O Ormseth ◽  
...  

Pacific capelin Mallotus catervarius are planktivorous small pelagic fish that serve an intermediate trophic role in marine food webs. Due to the lack of a directed fishery or monitoring of capelin in the Northeast Pacific, limited information is available on their distribution and abundance, and how spatio-temporal fluctuations in capelin density affect their availability as prey. To provide information on life history, spatial patterns, and population dynamics of capelin in the Gulf of Alaska (GOA), we modeled distributions of spawning habitat and larval dispersal, and synthesized spatially indexed data from multiple independent sources from 1996 to 2016. Potential capelin spawning areas were broadly distributed across the GOA. Models of larval drift show the GOA’s advective circulation patterns disperse capelin larvae over the continental shelf and upper slope, indicating potential connections between spawning areas and observed offshore distributions that are influenced by the location and timing of spawning. Spatial overlap in composite distributions of larval and age-1+ fish was used to identify core areas where capelin consistently occur and concentrate. Capelin primarily occupy shelf waters near the Kodiak Archipelago, and are patchily distributed across the GOA shelf and inshore waters. Interannual variations in abundance along with spatio-temporal differences in density indicate that the availability of capelin to predators and monitoring surveys is highly variable in the GOA. We demonstrate that the limitations of individual data series can be compensated for by integrating multiple data sources to monitor fluctuations in distributions and abundance trends of an ecologically important species across a large marine ecosystem.


Sign in / Sign up

Export Citation Format

Share Document