scholarly journals USING THE ROSSITER–McLAUGHLIN EFFECT TO OBSERVE THE TRANSMISSION SPECTRUM OF EARTH’S ATMOSPHERE

2015 ◽  
Vol 806 (2) ◽  
pp. L23 ◽  
Author(s):  
F. Yan ◽  
R. A. E. Fosbury ◽  
M. G. Petr-Gotzens ◽  
E. Pallé ◽  
G. Zhao
2014 ◽  
Vol 14 (2) ◽  
pp. 255-266 ◽  
Author(s):  
F. Yan ◽  
R. A. E. Fosbury ◽  
M. G. Petr-Gotzens ◽  
G. Zhao ◽  
W. Wang ◽  
...  

AbstractWith the rapid developments in the exoplanet field, more and more terrestrial exoplanets are being detected. Characterizing their atmospheres using transit observations will become a key datum in the quest for detecting an Earth-like exoplanet. The atmospheric transmission spectrum of our Earth will be an ideal template for comparison with future exo-Earth candidates. By observing a lunar eclipse, which offers a similar configuration to that of an exoplanet transit, we have obtained a high-resolution and high signal-to-noise ratio (SNR) transmission spectrum of the Earth's atmosphere. This observation was performed with the High Resolution Spectrograph at Xinglong Station, China during the total lunar eclipse in December 2011. We compare the observed transmission spectrum with our atmospheric model, and determine the characteristics of the various atmospheric species in detail. In the transmission spectrum, O2, O3, O2 · O2, NO2 and H2O are detected, and their column densities are measured and compared with the satellites data. The visible Chappuis band of ozone produces the most prominent absorption feature, which suggests that ozone is a promising molecule for the future exo-Earth characterization. Due to the high resolution and high SNR of our spectrum, several novel details of the Earth atmosphere's transmission spectrum are presented. The individual O2 lines are resolved and O2 isotopes are clearly detected. Our new observations do not confirm the absorption features of Ca II or Na I which have been reported in previous lunar eclipse observations. However, features in these and some other strong Fraunhofer line positions do occur in the observed spectrum. We propose that these are due to a Raman-scattered component in the forward-scattered sunlight appearing in the lunar umbral spectrum. Water vapour absorption is found to be rather weak in our spectrum because the atmosphere we probed is relatively dry, which prompts us to discuss the detectability of water vapour in Earth-like exoplanet atmospheres.


Author(s):  
Michael I. Budyko ◽  
Alexander B. Ronov ◽  
Alexander L. Yanshin

Author(s):  
A. NIKOLAYEV ◽  
◽  
A. M. Mebel ◽  
V. N. Azyazov ◽  
◽  
...  

This research is devoted to the problem of environmental pollution. The study of various pathways that reduce emissions of fuel combustion products into the Earth's atmosphere is still applicable today.


Author(s):  
E. L. Wolf

This is a physics textbook describing, at a college level, the physics and technology needed to provide sustainable long-term energy, past the era of fossil fuels. A summary is given of global power generation and consumption, with estimates of times until conventional fuels will deplete. Sustainable power sources, largely those coming from the Sun directly or indirectly, are described. As sustainable energy must preserve the Earth’s atmosphere and climate, key elements of these topics are included. Key energy technologies in this book include photovoltaics, wind turbines and the electric power grid, for which the underlying physics is developed. Nuclear fusion is described in the context of the Sun’s energy generation, in a brief description of tokamak fusion reactors, and also to introduce ideas of quantum physics needed for adequate treatment of photovoltaic devices. Energy flow in and out of the Earth’s atmosphere is discussed, including the role of greenhouse gas impurities arising from fossil fuel burning as trapping heat and raising the Earth’s temperature. Discussion is included of the Earth’s climatic history and future. Exercises are included for each chapter.


Sign in / Sign up

Export Citation Format

Share Document