Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles

2019 ◽  
Vol 10 (4) ◽  
pp. 045013 ◽  
Author(s):  
S Mustapha ◽  
M M Ndamitso ◽  
A S Abdulkareem ◽  
J O Tijani ◽  
D T Shuaib ◽  
...  
2016 ◽  
Vol 22 (S3) ◽  
pp. 1610-1611
Author(s):  
Jonathan E. Cowen ◽  
Ashley E. Harris ◽  
Cecelia C. Pena ◽  
Stephen C. Bryant ◽  
Allison J. Christy ◽  
...  

Author(s):  
P K Upadhyay ◽  
Vikas Kumar Jain ◽  
Shashank Sharma ◽  
A K Shrivastav ◽  
Ravi Sharma

2012 ◽  
Vol 21 ◽  
pp. 103-108 ◽  
Author(s):  
Hasnah Mohd Zaid ◽  
Noorhana Yahya ◽  
Noor Rasyada Ahmad Latiff

Application of nanotechnology in enhanced oil recovery (EOR) has been increasing in recent years. After secondary flooding, more than 60% of the original oil in place (OOIP) remains in the reservoir due to trapping of oil in the reservoir rock pores. One of the promising EOR methods is surfactant flooding, where substantial reduction in interfacial tension between oil and water could sufficiently displace oil from the reservoir. In this research, instability at the interfaces is created by dispersing 0.05 wt% ZnO nanoparticles in aqueous sodium dodecyl sulfate (SDS) solution during the core flooding experiment. The difference in the amount of particles adsorbed at the interface creates variation in the localized interfacial tension, thus induces fluid motion to reduce the stress. Four samples of different average crystallite size were used to study the effect of particle size on the spontaneous emulsification process which would in turn determine the recovery efficiency. From the study, ZnO nanofluid which consists of larger particles size gives 145% increase in the oil recovery as compared with the smaller ZnO nanoparticles. In contrast, 63% more oil was recovered by injecting Al2O3 nanofluid of smaller particles size as compared to the larger one. Formation of a cloudy solution was observed during the test which indicates the occurrence of an emulsification process. It can be concluded that ultralow Interfacial tension (IFT) value is not necessary to create spontaneous emulsification in dielectric nanofluid flooding.


2011 ◽  
Vol 65 (19-20) ◽  
pp. 2930-2933 ◽  
Author(s):  
Shubra Singh ◽  
J.N. Divya Deepthi ◽  
B. Ramachandran ◽  
M.S. Ramachandra Rao

2020 ◽  
Vol 20 (4) ◽  
pp. 746
Author(s):  
Siti Nurliyana Che Mohamed Hussein ◽  
Fatin Syahirah Mohamed Fuad ◽  
Marina Ismail

In this study, ZnO nanoparticles were synthesized using a sol-gel method for oil upgrading and wax deposition control. The synthesized ZnO nanoparticles were used to measure viscosity and wax deposition in the heavy crude oil and to investigate the effectiveness of the nanoparticles in the reduction of viscosity and wax deposition control of the heavy crude oil. This study investigated the effect of calcination temperature on ZnO nanoparticles during synthesis towards viscosity reduction and wax deposition control. ZnO nanoparticles were calcined at different temperatures ranging from 300 to 900 °C. The calcined ZnO nanoparticles were characterized using X-ray diffraction (XRD), Field Emission Scanning Electron microscope (FESEM), and Energy-dispersive X-ray spectroscopy (EDX) for its structure, size, shape, and morphology. The characterization results showed a hexagonal wurtzite structure of ZnO nanoparticles. The physical properties and rheology of heavy crude oil were characterized by using Electronic Rheometer and cold finger method to analyze the viscosity, shear rate, and wax deposition of the heavy crude oil for performance study. Decreased in crystallite size from 15.59 to 12.84 nm was observed with increasing calcination temperature from 300 to 400 °C, and a further increase of calcination temperature from 400 to 900 °C, the crystallite size increased from 12.84 to 41.58 nm. The degree viscosity reduction (DVR %) of heavy crude oil was observed to increase by 41.7%, with decreasing ZnO nanoparticles size from 30.11 nm to 12.84 nm. The optimum calcination temperature was 400 °C. Wax deposition decreases by 32.40% after the addition of ZnO nanoparticles into heavy crude oil.


Sign in / Sign up

Export Citation Format

Share Document