Microstructural evolution and IMCs growth behavior of Sn-58Bi-0.25Mo solder joint during aging treatment

2018 ◽  
Vol 5 (2) ◽  
pp. 026304
Author(s):  
Li Yang ◽  
Lu Zhu ◽  
Yaocheng Zhang ◽  
Shiyuan Zhou ◽  
Yifeng Xiong ◽  
...  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jianing Wang ◽  
Jieshi Chen ◽  
Zhiyuan Zhang ◽  
Peilei Zhang ◽  
Zhishui Yu ◽  
...  

Purpose The purpose of this article is the effect of doping minor Ni on the microstructure evolution of a Sn-xNi (x = 0, 0.05 and 0.1 wt.%)/Ni (Poly-crystal/Single-crystal abbreviated as PC Ni/SC Ni) solder joint during reflow and aging treatment. Results showed that the intermetallic compounds (IMCs) of the interfacial layer of Sn-xNi/PC Ni joints were Ni3Sn4 phase, while the IMCs of Sn-xNi/SC Ni joints were NiSn4 phase. After the reflow process and thermal aging of different joints, the growth behavior of interfacial layer was different due to the different mechanism of element diffusion of the two substrates. The PC Ni substrate mainly provided Ni atoms through grain boundary diffusion. The Ni3Sn4 phase of the Sn0.05Ni/PC Ni joint was finer, and the diffusion flux of Sn and Ni elements increased, so the Ni3Sn4 layer of this joint was the thickest. The SC Ni substrate mainly provided Ni atoms through the lattice diffusion. The Sn0.1Ni/SC Ni joint increases the number of Ni atoms at the interface due to the doping of 0.1Ni (wt.%) elements, so the joint had the thickest NiSn4 layer. Design/methodology/approach The effects of doping minor Ni on the microstructure evolution of an Sn-xNi (x = 0, 0.05 and 0.1 Wt.%)/Ni (Poly-crystal/Single-crystal abbreviated as PC Ni/SC Ni) solder joint during reflow and aging treatment was investigated in this study. Findings Results showed that the intermetallic compounds (IMCs) of the interfacial layer of Sn-xNi/PC Ni joints were Ni3Sn4 phase, while the IMCs of Sn-xNi/SC Ni joints were NiSn4 phase. After the reflow process and thermal aging of different joints, the growth behavior of the interfacial layer was different due to the different mechanisms of element diffusion of the two substrates. Originality/value In this study, the effect of doping Ni on the growth and formation mechanism of IMCs of the Sn-xNi/Ni (single-crystal) solder joints (x = 0, 0.05 and 0.1 Wt.%) was investigated.


2011 ◽  
Vol 687 ◽  
pp. 80-84
Author(s):  
Chang Hua Du ◽  
Hai Jian Zhao ◽  
Li Meng Yin ◽  
Fang Chen

As solder joints become increasingly miniaturized to meet the severe demands of future electronic packaging, the thickness of intermetallic compounds (IMC) in solder joint continuously decreases, while, the IMC proportion to the whole solder joint increases. So IMC plays a more and more important role in the reliability of microelectronic structure and microsystems. In this paper, the formation and growth behavior, along with the composition of IMC at the interface of Sn-based solders/Cu substrate in soldering were reviewed comprehensively. The effect of isothermal aging, thermal-shearing cycling and electromigration on the interfacial IMC growth and evolution were also presented. Furthermore, the formation mechanism of Kirkendall voids during thermal aging was introduced. In addition, the effect of the interfacial IMC on mechanical properties of solder joints was in-depth summarized. Adopting an appropriate flux to control the thickness of the IMC to improve the reliability of solder joints and electronic products was proposed in the end of this paper.


2013 ◽  
Vol 753 ◽  
pp. 377-382 ◽  
Author(s):  
Suk Joong L. Kang

This paper reviews our recent investigations on grain growth in ceramics. Grain growth behavior has been found to be governed by the grain boundary structure: normal growth with a stationary relative grain size distribution for rough boundaries and non-normal (nonstationary) growth for faceted boundaries. Based on the concept of nonlinear migration of faceted boundaries, the mixed control model of grain growth is introduced and the principle of microstructural evolution is deduced. This principle states that various types of grain growth behavior are predicted as a result of the coupling effect between the maximum driving force for growth and the critical driving force for appreciable migration of the boundary. A wealth of experimental results supports the theoretical predictions of grain growth behavior, showing the generality of the suggested principle of microstructural evolution. Application of this principle is also demonstrated for the fabrication of single crystals as well as polycrystals with desired microstructures.


2007 ◽  
Vol 36 (11) ◽  
pp. 1469-1475 ◽  
Author(s):  
Yung-Chi Lin ◽  
Toung-Yi Shih ◽  
Shih-Kang Tien ◽  
Jenq-Gong Duh

Sign in / Sign up

Export Citation Format

Share Document