reliability of solder joints
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 19)

H-INDEX

12
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7874
Author(s):  
Panwang Chi ◽  
Yesu Li ◽  
Hongfa Pan ◽  
Yibo Wang ◽  
Nancheng Chen ◽  
...  

Electroless Ni(P)/electroless Pd/immersion Au (ENEPIG) is a common surface finish in electronic packaging, while the Ni(P) layer increases the impedance of solder joints and leads to signal quality degradation in high-frequency circuits. Reducing the thickness of the Ni(P) layer can balance the high impedance and weldability. In this paper, the interfacial reaction process between ultrathin ENEPIG substrates with different Ni layer thicknesses (0.112 and 0.185 μm) and Sn–3.0Ag–0.5Cu (SAC305) solder during reflow and aging was studied. The bonding ability and reliability of solder joints with different surface finishes were evaluated based on solder ball shear test, drop test and temperature cycle test (TCT), and the failure mechanism was analyzed from the perspective of intermetallic compound (IMC) interface growth. The results showed that the Ni–Sn–P layer generated by ultrathin ENEPIG can inhibit the growth of brittle IMC so that the solder joints maintain high shear strength. Ultrathin ENEPIG with a Ni layer thickness of 0.185 μm had no failure cracks under thermal cycling and drop impact, which can meet actual reliability standards. Therefore, ultrathin ENEPIG has broad prospects and important significance in the field of high-frequency chip substrate design and manufacturing.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2041
Author(s):  
Min Shang ◽  
Chong Dong ◽  
Haoran Ma ◽  
Yunpeng Wang ◽  
Haitao Ma

The multiple reflows process is widely used in 3D packaging in the field of electronic packaging. The growth behavior of interfacial intermetallic compound (IMC) is more important to the reliability of solder joints. In this paper, experimental measurement combined with simulation calculation were preformed to investigate the evolution of Cu concentration in solders during multiple reflows, as well as its effects on the growth behavior of IMC and solder properties. The concentration of Cu in solder fluctuated, increasing with the increase of reflow times, which led to the fluctuation in the growth rate of the IMC. Furthermore, the Vickers hardness and melting point of the solder fluctuated during the multiple reflow processes due to the fluctuation in the Cu concentration. The data generated during this study could help to develop machine learning tools in relation to the study of interfacial microstructure evolution during multiple reflows.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xinmeng Zhai ◽  
Yue Chen ◽  
Yuefeng Li

Purpose The purpose of this paper is to develop a new composite solder to improve the reliability of composite solder joints. Nano-particles modified multi-walled carbon nanotubes (Ni-MWCNTs) can indeed improve the microstructure of composite solder joints and improve the reliability of solder joints. Although many people have conducted in-depth research on the composite solder of Ni-MWCNTs. However, no one has studied the performance of Ni-MWCNTs composite solder under different aging conditions. In this article, Ni-MWCNTs was added to Sn-Ag-Cu (SAC) solder, and the physical properties of composite solder, the microstructure and mechanical properties were evaluated. Design/methodology/approach In this study, the effect of different aging conditions on the intermetallic compound (IMC) layer growth and shear strength of Ni-modified MWCNTs reinforced SAC composite solder was studied. Compared with SAC307 solder alloy, the influence of Ni-MWCNTs with different contents (0, 0.1 and 0.2 Wt.%) on composite solder was examined. To study the aging characteristics of composite solder joints, the solder joints were aged at 80°C, 120°C and 150°C. Findings The experimental results show that the content of Ni-MWCNTs affects the morphology and growth of the IMC layer at the interface. The microhardness of the solder increases and the wetting angle decreases. After aging at moderate (120°C) and high temperature (150°C), the morphology of the Cu6Sn5 IMC layer changed from scallop to lamellar and the grain size became coarser. The following two different phase compositions were observed in the solder joints with Ni-MWCNTs reinforcement: Cu3Sn and (Cu, Ni)6Sn5. The fracture surface of the solder joints all appeared ductile dents, and the size of the pits increased significantly with the increase of the aging temperature. Through growth kinetic analysis, Ni-modified MWCNTs in composite solder joints can effectively inhibit the diffusion of atoms in solder joints. In short, when the addition amount of Ni-MWCNTs is 0.1 Wt.%, the solder joints exhibit the best wettability and the highest shear strength. Originality/value In this study, the effects of aging conditions on the growth and shear strength of the IMC layer of Ni modified MWCNTs reinforced SAC307 composite solder were studied. The effects of Ni MWCNTs with different contents (0, 0.1 and 0.2 Wt.%) on the composite solder were examined.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2486
Author(s):  
Wu Yue ◽  
Chao Ding ◽  
HongBo Qin ◽  
ChengGong Gong ◽  
JunXi Zhang

The crystallographic characteristic effect of Cu substrate on cathode dissolution behavior in line-type Cu/Sn–3.0Ag–0.5Cu (SAC305)/Cu solder joints during electromigration (EM) was investigated by scanning electron microscope (SEM), electron backscatter diffraction (EBSD), and first-principles calculations. The SEM and EBSD results show that the crystallographic characteristic of Cu substrate is crucial to cathode dissolution behavior under a direct current of 1.5 × 104 A/cm2 at 125 °C ± 2 °C. When the (001) plane of copper grain adjacent to the Cu3Sn/Cu interface is perpendicular or nearly perpendicular to the current direction, local cathode dissolution tips are easily formed, whereas the (111) plane remains mostly undissolved, which finally leads to the inhomogeneous cathode serrated dissolution in the substrate. The first-principles calculation results reveal that the different surface energies and energy barriers of the different crystallographic planes of Cu grains in the substrate are responsible for the local cathode dissolution tips. Adjusting the copper grain in a substrate to a crystal plane or direction that is difficult to dissolve during EM is a promising method for improving the reliability of solder joints in the future.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jianguo Cui ◽  
Keke Zhang ◽  
Di Zhao ◽  
Yibo Pan

AbstractThrough ultrasonic wave assisted Sn2.5Ag0.7Cu0.1RExNi/Cu (x = 0, 0.05, 0.1) soldering test and − 40 to 125 °C thermal shock test, the microstructure and shear properties of Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints under thermal cycling were studied by the SEM, EDS and XRD. The results show that the Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints with high quality and high reliability can be obtained by ultrasonic assistance. When the ultrasonic vibration power is 88 W, the ultrasonic-assisted Sn2.5Ag0.7Cu0.1RE0.05Ni/Cu solder joints exhibits the optimized performance. During the thermal cycling process, the shear strength of ultrasonic-assisted Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints had a linear relationship with the thickness of interfacial intermetallic compound (IMC). Under the thermal cycling, the interfacial IMC layer of ultrasonic-assisted Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints consisted of (Cu,Ni)6Sn5 and Cu3Sn. The thickness of interfacial IMC of ultrasonic-assisted Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints was linearly related to the square root of equivalent time. The growth of interfacial IMC of ultrasonic-assisted Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints had an incubation period, and the growth of IMC was slow within 300 cycles. And after 300 cycles, the IMC grew rapidly, the granular IMC began to merge, and the thickness and roughness of IMC increased obviously, which led to a sharp decrease in the shear strength of the solder joints. The 0.05 wt% Ni could inhibit the excessive growth of IMC, improve the shear strength of solder joints and improve the reliability of solder joints. The fracture mechanism of ultrasonic-assisted Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints changed from the ductile–brittle mixed fracture in the solder/IMC transition zone to the brittle fracture in the interfacial IMC.


2021 ◽  
Author(s):  
Jianguo Cui ◽  
Keke Zhang ◽  
Di Zhao ◽  
Yibo Pan

Abstract Through ultrasonic wave assisted Sn2.5Ag0.7Cu0.1RExNi/Cu(x=0, 0.05, 0.1) soldering test and -40~125℃ thermal shock test, the microstructure and mechanical properties of Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints under thermal cycling were studied by the SEM, EDS andXRD. The results show that the Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints with high quality and high reliability can be obtained by ultrasonic assistance. During the thermal cycling process, the shear strength of ultrasonic-assisted Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints had a linear relationship with the thickness of interfacial intermetallic compound (IMC). The addition of an appropriate amount of Ni could inhibit the excessive growth of IMC, improve the shear strength of solder joints and improve the reliability of solder joints. Under the condition of 1000 cycles of thermal cycling, the thickness and roughness of IMC of the solder joints with 0.05 wt.% Ni were the smallest, and the shear strength of the solder joints was 19.8 MPa, which was 28.6% higher than that of the solder joints without Ni.The interfacial IMC layer of ultrasonic-assisted Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints consisted of (Cu,Ni) 6Sn5 and Cu3Sn. In the thermal cycling, the thickness of interfacial IMC of ultrasonic-assisted Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints was linearly related to the square root of equivalent time. The growth of interfacial IMC of ultrasonic-assisted Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints had an incubation period, and the growth of IMC was slow within 300 cycles. And after 300 cycles, the IMC grew rapidly, the granular IMC began to merge, the thickness and roughness of IMC increased obviously, the defects such as microcracks and microvoids began to appear, and the shear strength of the solder joints decreased rapidly.The fracture mechanism of ultrasonic-assisted Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints changed from the ductile-brittle mixed fracture in the solder/IMC transition zone to the brittle fracture in the interfacial IMC.


Author(s):  
Nan Jiang ◽  
Liang Zhang ◽  
Kai-Kai Xu ◽  
Mu-Lan Li ◽  
Feng-Jiang Wang

In this work, SiC nanowires (SiC NWs) reinforced SBG (Sn-58Bi-0.05GNSs) composite solder was prepared using powder metallurgy route. The effect of SiC NWs on melting temperature, wetting behavior, shear properties, microstructure of the prepared solder joints and interfacial reaction were studied in detail. Results reveal that incorporating SiC NWs can develop the wetting behavior and shear properties of solder joint but has a little effect on melting temperature. The microstructure of solder is refined markedly with the addition of SiC NWs, which is one of the reasons for the increase in the shear strength of the solder joints. Additionally, the dimension of Cu6Sn5 IMC grains diminishes with the doping of SiC NWs, which resulted in the thinning of Cu6Sn5 IMC layer. Thence, the addition of SiC NWs may be an effective way to improve the reliability of solder joints.


Sign in / Sign up

Export Citation Format

Share Document