Effect of Zn content and heat treatment on tribological behavior of biodegradable Mg-xZn alloys in simulated body fluid

2019 ◽  
Vol 6 (8) ◽  
pp. 0865b5 ◽  
Author(s):  
Erkan Koç ◽  
Muhammet Emre Turan
2007 ◽  
Vol 361-363 ◽  
pp. 681-684
Author(s):  
Deepak K. Pattanayak ◽  
Tomiharu Matsushita ◽  
Hiroaki Takadama ◽  
Tadashi Kokubo ◽  
Takashi Nakamura

Tantalum metal was soaked in NaOH and CaCl2 solutions, and then subjected to heat treatment at 500°C. EDX analysis showed that about 6.5 at. % of Na was incorporated into the surface of the tantalum metal by the first NaOH treatment. These Na+ ions were replaced by Ca2+ ions by the subsequent CaCl2 treatment. According to TF-XRD patterns, an amorphous sodium tantalate was seemed to be formed on the tantalum metal by the NaOH treatment and transformed into amorphous calcium tantalate by the CaCl2 treatment. This phase was crystallized into Ca2Ta2O7 by heat treatment. Critical detaching load of the surface of the CaCl2-treated tantalum metal was as low as 5mN, while as high as 42mN after the heat treatment. Apatite-forming ability of the NaOH-treated tantalum metal in a simulated body fluid (SBF) was appreciably increased by the CaCl2 treatment and maintained even after the heat treatment.


2014 ◽  
Vol 922 ◽  
pp. 657-662 ◽  
Author(s):  
Sharidah Azuar Abdul Azis ◽  
John Kennedy ◽  
Peng Cao

In this study, hydroxyapatite (HA) coatings on Ti6Al4V substrate were deposited using an ion beam sputtering technique. Owing to its medical applications, the crystalline phases present in the HA must be controlled. This study investigated the effect of post-deposition heat treatment at different temperatures and evaluated the microstructure of the HA coatings and their behaviours in simulated body fluid (SBF). The post-deposition treatment of the as-deposited samples was carried out in an air-circulated furnace at a temperature between 3000C and 6000C. The XRD patterns reveal that the minimum temperature to transform the HA coating from amorphous to crystalline phase is 4000C. A higher temperature at 6000C leads to a growth of the crystalline HA phases. Fourier transform infrared spectroscopy (FTIR) measurements show the existence of hydroxyl and PO-bonds in all coatings and the amounts varied with temperature. Atomic Force Microscopy (AFM) study suggests that the nanostructured crystalline HA starts to grow at 4000C and becomes more obvious at a higher temperature of 6000C. The simulated body fluid (SBF) test reveals that better apatite formation with post deposition heat treatment at 6000C would potentially enhance the formation of new bone (osseointegration).


2020 ◽  
Vol 71 (6) ◽  
pp. 96-110
Author(s):  
Omyma Ramadan Mohammed Khalifa ◽  
Abdel-Wahab Abd Elhamid Ali ◽  
Aisha Kassab ◽  
Amal Hemida Tilp ◽  
Marwa Mohamed Mohamed Mohamed Esmail

In recent years, smart implants take the most attention in the field of bone manufacturing. Our study seeks to develop the biodegradability of Mg alloys to use orthopedic implants for the biomedical applications to avoid post removal of the implant. Mg and Zn are very important to human body and have no toxicity. Mg - 6% wt Zn biodegradability is studied in simulated body fluid for two and four weeks. Four electro-deposition bathes are used to deposit a coat on the substrate to improve the corrosion resistance of this alloy in the media of simulated body fluid. The following analyses were studied to emphasize the research aim. Scanning electron microscope (SEM), Energy dispersive X-Ray (EDX) analysis shows the surface morphology and the elements of the coat phases components. The results also confirmed by X-Ray diffraction Pattern (XRD) that show the phases that confirmed the formation of hydroxyapatite HA phase, Fourier-Transform Infrared Spectroscopy (FTIR) to investigate the functional groups of the phases coats that confirm the formation of hydroxyapatite and the electrochemical measurements that investigate the improvement of corrosion resistance. The results indicated that the fourth bath gives the best coat and four weeks immersion gives more corrosion resistance than two weeks.


Author(s):  
Alaa A. Mohammed ◽  
Jawad K. Oleiwi

Polyetheretherketone is a semi-crystalline thermoplastic polymer, that so with heat treatments, it is possible to get different properties which are very important for the material performance. Heat treatment is a broadly utilized to develop the semi-crystalline polymers properties. In the present investigation, annealing of polyetheretherketone (PEEK) was carried out at temperatures above its glass transition temperature (Tg) to study its effects upon the biological conduct of the control and PEEK ternary composites. The bioactivity of the specimens was evaluated by investigating the apatite formation after immersion for different periods in a simulated body fluid (SBF). The biocompatibility of specimens was assessed by MTT assay. Additionally, the antibacterial property of the specimens versus S. aureus was observed with the optical density methods. The results manifested that the formation of hydroxyapatite was obviously observed on specimens after immersion for (7 and 14 days) in the simulated body fluid (SBF). Otherwise, the results of MTT assay recorded the PEEK specimens that excited the activity of fibroblasts, and therefore a high cytocompatibility was noticed and the specimens revealed antibacterial properties against S. aureus. So, the results of the bioactivity, biocompatibility and antibacterial tests in vitro demonstrated that the heat treatment enhanced biological behavior.


2017 ◽  
Vol 26 (11) ◽  
pp. 5501-5510 ◽  
Author(s):  
Li Zhao ◽  
Wei Chen ◽  
Jianwei Dai ◽  
Zhangzhong Wang ◽  
Xiaobo Zhang

2015 ◽  
Vol 16 (2) ◽  
pp. 279-286 ◽  
Author(s):  
Esguerra-Arce Johanna ◽  
Aguilar-Castro Yesid ◽  
Aperador-Chaparro William ◽  
Ipaz-Cuastumal Leonid ◽  
Bolaños-Pantoja Gilberto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document