Effect of water absorption on the mechanical properties of cross-ply hybrid pseudo- stem banana/glass fibre reinforced polypropylene composite

2019 ◽  
Vol 6 (9) ◽  
pp. 095326 ◽  
Author(s):  
Norizzati Zulkafli ◽  
Sivakumar Dhar Malingam ◽  
Siti Hajar Sheikh Md Fadzullah ◽  
Zaleha Mustafa ◽  
Kamarul Ariffin Zakaria ◽  
...  
2015 ◽  
Vol 72 ◽  
pp. 54-59 ◽  
Author(s):  
Umar Adli Amran ◽  
Sarani Zakaria ◽  
Chin Hua Chia ◽  
Sharifah Nabihah Syed Jaafar ◽  
Rasidi Roslan

Author(s):  
MK Gupta ◽  
Vipul Deep

In this work, the effect of water absorption and stacking sequences on the mechanical properties (i.e. impact, tensile and flexural) of hybrid sisal/glass polyester composites has been studied. Each composite laminate is prepared by the hand lay-up technique followed by static compression using about 20 wt% of fibre content. Different stacking sequences are obtained by changing the position and number of glass layers keeping a total of eight plies in each composite. Water absorption behaviour is investigated by soaking the composite specimens in the distilled water until saturation and its characteristics such as sorption, diffusion and permeability coefficient are measured. The obtained results suggested that the mechanical and water resistance properties of sisal composites are considerably enhanced by the incorporation of glass fibre. There is 23%, 29% and 46% improvement in tensile strength, flexural strength and impact strength respectively in hybrid composites than that of sisal composite. However, the effect of water absorption showed a significant reduction in the mechanical performance of all the composites. Morphological analysis by scanning electron microscope has been also performed to support the statement as weakening of fibre–matrix interfacial bonding by water absorption.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1261
Author(s):  
Catarina S. P. Borges ◽  
Alireza Akhavan-Safar ◽  
Eduardo A. S. Marques ◽  
Ricardo J. C. Carbas ◽  
Christoph Ueffing ◽  
...  

Short fiber reinforced polymers are widely used in the construction of electronic housings, where they are often exposed to harsh environmental conditions. The main purpose of this work is the in-depth study and characterization of the water uptake behavior of PBT-GF30 (polybutylene terephthalate with 30% of short glass fiber)as well as its consequent effect on the mechanical properties of the material. Further analysis was conducted to determine at which temperature range PBT-GF30 starts experiencing chemical changes. The influence of testing procedures and conditions on the evaluation of these effects was analyzed, also drawing comparisons with previous studies. The water absorption behavior was studied through gravimetric tests at 35, 70, and 130 °C. Fiber-free PBT was also studied at 35 °C for comparison purposes. The effect of water and temperature on the mechanical properties was analyzed through bulk tensile tests. The material was tested for the three temperatures in the as-supplied state (without drying or aging). Afterwards, PBT-GF30 was tested at room temperature following water immersion at the three temperatures. Chemical changes in the material were also analyzed through Fourier-transform infrared spectroscopy (FTIR). It was concluded that the water diffusion behavior is Fickian and that PBT absorbs more water than PBT-GF30 but at a slightly higher rate. However, temperature was found to have a more significant influence on the rate of water diffusion of PBT-GF30 than fiber content did. Temperature has a significant influence on the mechanical properties of the material. Humidity contributes to a slight drop in stiffness and strength, not showing a clear dependence on water uptake. This decrease in mechanical properties occurs due to the relaxation of the polymeric chain promoted by water ingress. Between 80 and 85 °C, after water immersion, the FTIR profile of the material changes, which suggests chemical changes in the PBT. The water absorption was simulated through heat transfer analogy with good results. From the developed numerical simulation, the minimum plate size to maintain the water ingress unidirectional was 30 mm, which was validated experimentally.


2010 ◽  
Vol 70 (14) ◽  
pp. 2063-2067 ◽  
Author(s):  
Shirley Zhiqi Shen ◽  
Stuart Bateman ◽  
Patrick McMahon ◽  
Mel Dell’Olio ◽  
Januar Gotama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document