scholarly journals Gold nanoparticle modified silicon nanowire array based sensor for low-cost, high sensitivity and selectivity detection of mercury ions

2020 ◽  
Vol 7 (3) ◽  
pp. 035017 ◽  
Author(s):  
Zonglin Huang ◽  
Shixing Chen ◽  
Yuelin Wang ◽  
Tie Li
Author(s):  
Che-Wei Hsu ◽  
Wen-Chao Feng ◽  
Kang J. Chang ◽  
Gou-Jen Wang

In this study, a novel and simple electrochemical glucose biosensor based on a silicon nanowire array (SNA) electrode was proposed. Metal-assisted etching (MAE) method using an AgNO3 and HF mixing solution as the etchant was employed to grow the silicon nanowire array (SNA) electrode. A thin gold shell is then sputtered over each silicon nanowire. Potassium ferricyanide, glucose oxidase (GOx), and a Nafion thin film were then sequentially coated onto the fabricated SNA for glucose detection. The processing time of the MAE and sputtering as well as the GOx concentration were optimized in terms of the redox peak currents of the SNA electrode. Compared with the corresponding plane gold electrode, the effective sensing area of the synthesized SNA electrode was measured to be 6.12 folds. Actual glucose detections demonstrated that the proposed SNA array electrode could operate in a linear range of 0.55 mM-11.02 mM and a very high sensitivity of 346 μA mM−1 cm−2. The proposed SNA electrode based glucose biosensor possesses advantages of simple fabrication process, low cost, and high sensitivity. It is feasible for future clinical applications.


Sensor Review ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mulayam Singh Gaur ◽  
Rajni Yadav ◽  
Mamta Kushwah ◽  
Anna Nikolaevna Berlina

Purpose This information will be useful in the selection of materials and technology for the detection and removal of mercury ions at a low cost and with high sensitivity and selectivity. The purpose of this study is to provide the useful information for selection of materials and technology to detect and remove the mercury ions from water with high sensitivity and selectivity. The purpose of this study is to provide the useful information for selection of materials and technology to detect and remove the mercury ions from water with high sensitivity and selectivity. Design/methodology/approach Different nano- and bio-materials allowed for the development of a variety of biosensors – colorimetric, chemiluminescent, electrochemical, whole-cell and aptasensors – are described. The materials used for their development also make it possible to use them in removing heavy metals, which are toxic contaminants, from environmental water samples. Findings This review focuses on different technologies, tools and materials for mercury (heavy metals) detection and remediation to environmental samples. Originality/value This review gives up-to-date and systemic information on modern nanotechnology methods for heavy metal detection. Different recognition molecules and nanomaterials have been discussed for remediation to water samples. The present review may provide valuable information to researchers regarding novel mercury ions detection sensors and encourage them for further research/development.


Biosensors ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 300
Author(s):  
Li Gao ◽  
Qiuxiang Lv ◽  
Ni Xia ◽  
Yuanwei Lin ◽  
Feng Lin ◽  
...  

Excessive mercury ions (Hg2+) cause great pollution to soil/water and pose a major threat to human health. The high sensitivity and high selectivity in the Hg2+ detection demonstrated herein are significant for the research areas of analytical chemistry, chemical biology, physical chemistry, drug discovery, and clinical diagnosis. In this study, a series of simple, low-cost, and highly sensitive biochips based on a graphene oxide (GO)/DNA hybrid was developed. Hg2+ is detected with high sensitivity and selectivity by GO/DNA hybrid biochips immobilized on glass slides. The performance of the biosensors can be improved by introducing more phosphorothioate sites and complementary bases. The best limit of detection of the biochips is 0.38 nM with selectivity of over 10:1. This sensor was also used for Hg2+ detection in Dendrobium. The results show this biochip is promising for Hg2+ detection.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1531 ◽  
Author(s):  
Shi Bai ◽  
Yongjun Du ◽  
Chunyan Wang ◽  
Jian Wu ◽  
Koji Sugioka

Surface-enhanced Raman spectroscopy (SERS) has advanced over the last four decades and has become an attractive tool for highly sensitive analysis in fields such as medicine and environmental monitoring. Recently, there has been an urgent demand for reusable and long-lived SERS substrates as a means of reducing the costs associated with this technique To this end, we fabricated a SERS substrate comprising a silicon nanowire array coated with silver nanoparticles, using metal-assisted chemical etching followed by photonic reduction. The morphology and growth mechanism of the SERS substrate were carefully examined and the performance of the fabricated SERS substrate was tested using rhodamine 6G and dopamine hydrochloride. The data show that this new substrate provides an enhancement factor of nearly 1 × 108. This work demonstrates that a silicon nanowire array coated with silver nanoparticles is sensitive and sufficiently robust to allow repeated reuse. These results suggest that this newly developed technique could allow SERS to be used in many commercial applications.


2011 ◽  
Vol 10 ◽  
pp. 33-37 ◽  
Author(s):  
Ludovic Dupré ◽  
Denis Buttard ◽  
Pascal Gentile ◽  
Nicolas Pauc ◽  
Amit Solanki

2015 ◽  
Vol 162 (10) ◽  
pp. B264-B268 ◽  
Author(s):  
Che-Wei Hsu ◽  
Wen-Chao Feng ◽  
Fang-Ci Su ◽  
Gou-Jen Wang

ChemInform ◽  
2014 ◽  
Vol 45 (30) ◽  
pp. no-no
Author(s):  
Yoichi M. A. Yamada ◽  
Yoshinari Yuyama ◽  
Takuma Sato ◽  
Shigenori Fujikawa ◽  
Yasuhiro Uozumi

2021 ◽  
Vol 46 (5) ◽  
pp. 1189
Author(s):  
Alexey S. Ustinov ◽  
Liubov A. Osminkina ◽  
Denis E. Presnov ◽  
Leonid A. Golovan

Sign in / Sign up

Export Citation Format

Share Document