scholarly journals Removal of Ni and Zn heavy metal ions from industrial waste waters using modified slag of electric arc furnace

Author(s):  
Morteza Changalvaei ◽  
Mohammad Reza Nilforoushan ◽  
Arash Arabmarkadeh ◽  
Morteza Tayebi
1982 ◽  
Vol 17 (1-6) ◽  
pp. 219-225 ◽  
Author(s):  
G. KYUCHOUKOV ◽  
D. HADJIEV ◽  
L. BOYADZHIEV

2020 ◽  
Vol 13 ◽  
Author(s):  
Rishabha Malviya ◽  
Pramod Sharma ◽  
Akanksha Sharma

: Manuscript discussed about the role of polysaccharides and their derivatives in the removal of metal ions from industrial waste water. Quick modernization and industrialization increases the amount of various heavy metal ions in the environment. They can possess various disease in humans and also causes drastic environmental hazards. In this review the recent advancement for the adsorption of heavy metal ions from waste water by using different methods has been studied. Various natural polymers and their derivatives are act as effective adsorbents for the removal of heavy metal ions from the waste water released from the industries and the treated water released into the environment can decreases the chances of diseases in humans and environmental hazards. From the literature surveys it was concluded that the removal of heavy metal ions from the industrial waste water was important to decrease the environmental pollution and also diseases caused by the heavy metal ions. Graft copolymers were acts as most efficient adsorbent for the removal of heavy metal ions and most of these followed the pseudo first order and pseudo second order model of kinetics.


Author(s):  

Water factor plays an important role in formation of healthy environment for human beings. Due to unfavorable anthropogenic impact upon environment certain surface and groundwater water supply sources are contaminated with heavy metal compounds. Clints (siliceous rocks) are considered the most promising materials for the natural and waste waters treatment from such ingredients. The paper presents the results of the siliceous rocks’ physical/chemical and operational properties studying. It has been shown that these siliceous rocks satisfy all requirements to filtering materials. Methods of physical/chemical analysis were applied for studying the adsorption processes nature. It was for the first time stated (with methods of potentiometric titration and infra-red spectroscopy) that siliceous rocks included the fixed functional ion-exchange groups in their composition and were subacid cationits. Beside chemical adsorption heavy metal ions interact with siliceous rocks due to the action of their physical nature forces. Physical adsorption contributes the most in the heavy metal compounds up-taking by filtering materials, this is supported by the fact of low values of the process activation energy: from 3 to 8 kJ/gram-molecule. Parameters of the process of heavy metal ions adsorption with siliceous rocks in static and dynamic conditions have been calculated in accordance with the experimental results. Influence of salt content and the liquid phase pH value on the adsorption process has been stated. Optimal conditions for the worked siliceous rocks regeneration have been determined. New data on heavy metals cations adsorption with nuclear filtering materials confirm principal possibility of their use for natural and waste waters treatment.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 633 ◽  
Author(s):  
Angélica Lozano-Lunar ◽  
Enrique Fernández Ledesma ◽  
Álvaro Romero Esquinas ◽  
José Jiménez Romero ◽  
José Fernández Rodríguez

A new line of mortars incorporating hydrotalcites was developed. This research article shows the results of a study of a double barrier technique (DBT) for Pb immobilisation from electric arc furnace dust (EAFD) in mortars with the addition of three different hydrotalcites (H1, H2, and H3). Electric arc furnace dust (EAFD) is a hazardous waste due to its heavy metal leachability. The aim was to obtain a mortar in which, due to its chemical composition, heavy metal leaching satisfied environmental criteria. Previously, a physical and chemical characterisation of mortar material components was carried out. The leaching behaviour of Pb from EAFD in double barrier (DB) mortars with different hydrotalcites was analysed for compressive strength to determine treatment effectiveness. DB mortars could be considered monoliths because their compressive strengths were higher than 1 MPa but exhibited a decrease due to hydrotalcite incorporation. The mortar EAFD25_H2 (with ethylenediaminetetraacetate (EDTA) in the interlayer of the hydrotalcite) showed one minor reduction in compressive strength with respect to the reference mortar because formation of Portlandite was observed, which is a characteristic of cement hydration. The conventional immobilisation mortar (EAFD25) did not achieve Pb immobilisation. However, DB mortars with dimercaptosuccinate (DMSA) in the interlayer of the hydrotalcite reduced Pb release by ~50%, from 20.29 mg kg−1 (EAFD25) to 9.88 mg kg−1 (EAFD25_H3). In addition, EAFD25_H3 included the lowest hydrotalcite content, thereby improving the immobilisation ratio. The results of this study contribute to better Pb immobilisation, thus satisfying environmental criteria.


Sign in / Sign up

Export Citation Format

Share Document