Deep neural models for automated multi-task diagnostic scan management - quality enhancement, view classification and report generation

Author(s):  
Karthik K ◽  
Sowmya S Kamath

Abstract The detailed physiological perspectives captured by medical imaging provides actionable insights to doctors to manage comprehensive care of patients. However, the quality of such diagnostic image modalities is often affected by mismanagement of the image capturing process by poorly trained technicians and older/poorly maintained imaging equipment. Further, a patient is often subjected to scanning at different orientations to capture the frontal, lateral and sagittal views of the affected areas. Due to the large volume of diagnostic scans performed at a modern hospital, adequate documentation of such additional perspectives is mostly overlooked, which is also an essential key element of quality diagnostic systems and predictive analytics systems. Another crucial challenge affecting effective medical image data management is that the diagnostic scans are essentially stored as unstructured data, lacking a well-defined processing methodology for enabling intelligent image data management for supporting applications like similar patient retrieval , automated disease prediction etc. One solution is to incorporate automated diagnostic image descriptions of the observation/findings by leveraging computer vision and natural language processing. In this work, we present multi-task neural models capable of addressing these critical challenges. We propose ESRGAN, an image enhancement technique for improving the quality and visualization of medical chest X-ray images, thereby substantially improving the potential for accurate diagnosis, automatic detection and region-of-interest segmentation. We also propose a CNN-based model called ViewNet for predicting the view orientation of the X-ray image and generating a medical report using Xception net, thus facilitating a robust medical image management system for intelligent diagnosis applications. Experimental results are demonstrated using standard metrics like BRISQUE, PIQE and BLEU scores, indicating that the proposed models achieved excellent performance. Further, the proposed deep learning approaches enable diagnosis in a lesser time and their hybrid architecture shows significant potential for supporting many intelligent diagnosis applications.

2021 ◽  
Vol 11 (20) ◽  
pp. 9538
Author(s):  
Marta Drążkowska

In this paper, we present a fully automatic solution for denoting bone configuration on two-dimensional images. A dataset of 300 X-ray images of children’s knee joints was collected. The strict experimental protocol established in this study increased the difficulty of post-processing. Therefore, we tackled the problem of obtaining reliable information from medical image data of insufficient quality. We proposed a set of features that unambiguously denoted configuration of the bone on the image, namely the femur. It was crucial to define the features that were independent of age, since age variability of subjects was high. Subsequently, we defined image keypoints directly corresponding to those features. Their positions were used to determine the coordinate system denoting femur configuration. A complex keypoint detector was proposed, composed of two different estimator architectures: gradient-based and based on the convolutional neural network. The positions of the keypoints were used to determine the configuration of the femur on each image frame. The overall performance of both estimators working in parallel was evaluated using X-ray images from the publicly available LERA dataset.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 87
Author(s):  
P. Nalini ◽  
Dr B. L. Malleswari

Medical Image Retrieval is mainly meant for enhancing the healthcare system by coordinating physicians and interact with computing machines. This helps the doctors and radiologists in understanding the case and leads to automatic medical image annotation process. The choice of image attributes have crucial role in retrieving similar looking images of various anatomic regions.  In this paper we presented an empirical analysis of an X-Ray image retrieval system with intensity, statistical features, DFT and DWT transformed coefficients and Eigen values using Singular Valued Decomposition techniques as parameters. We computed these features by dividing the images in five different regular and irregular zones. In our previous work we proved that analyzing the image with local attributes result in better retrieval efficiency and hence in this paper we computed the attributes by dividing the image into 64 regular and irregular zones. This experimentation carried out on IRMA 2008 and IRMA 2009 X-Ray image data sets. In this work we come up with some conclusions like wavelet based textural attributes, intensity features and Eigen values extracted from different regular zones worked well in retrieving the images over the features computed over irregular zones. We also determined like the set of image features in which form of zoning for different anatomical regions  result in excellent retrieval of  similar looking X-Ray images.


2021 ◽  
pp. 1-12
Author(s):  
Yingwen Fu ◽  
Nankai Lin ◽  
Xiaotian Lin ◽  
Shengyi Jiang

Named entity recognition (NER) is fundamental to natural language processing (NLP). Most state-of-the-art researches on NER are based on pre-trained language models (PLMs) or classic neural models. However, these researches are mainly oriented to high-resource languages such as English. While for Indonesian, related resources (both in dataset and technology) are not yet well-developed. Besides, affix is an important word composition for Indonesian language, indicating the essentiality of character and token features for token-wise Indonesian NLP tasks. However, features extracted by currently top-performance models are insufficient. Aiming at Indonesian NER task, in this paper, we build an Indonesian NER dataset (IDNER) comprising over 50 thousand sentences (over 670 thousand tokens) to alleviate the shortage of labeled resources in Indonesian. Furthermore, we construct a hierarchical structured-attention-based model (HSA) for Indonesian NER to extract sequence features from different perspectives. Specifically, we use an enhanced convolutional structure as well as an enhanced attention structure to extract deeper features from characters and tokens. Experimental results show that HSA establishes competitive performance on IDNER and three benchmark datasets.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Michael Rutherford ◽  
Seong K. Mun ◽  
Betty Levine ◽  
William Bennett ◽  
Kirk Smith ◽  
...  

AbstractWe developed a DICOM dataset that can be used to evaluate the performance of de-identification algorithms. DICOM objects (a total of 1,693 CT, MRI, PET, and digital X-ray images) were selected from datasets published in the Cancer Imaging Archive (TCIA). Synthetic Protected Health Information (PHI) was generated and inserted into selected DICOM Attributes to mimic typical clinical imaging exams. The DICOM Standard and TCIA curation audit logs guided the insertion of synthetic PHI into standard and non-standard DICOM data elements. A TCIA curation team tested the utility of the evaluation dataset. With this publication, the evaluation dataset (containing synthetic PHI) and de-identified evaluation dataset (the result of TCIA curation) are released on TCIA in advance of a competition, sponsored by the National Cancer Institute (NCI), for algorithmic de-identification of medical image datasets. The competition will use a much larger evaluation dataset constructed in the same manner. This paper describes the creation of the evaluation datasets and guidelines for their use.


2021 ◽  
Vol 29 (1) ◽  
pp. 19-36
Author(s):  
Çağín Polat ◽  
Onur Karaman ◽  
Ceren Karaman ◽  
Güney Korkmaz ◽  
Mehmet Can Balcı ◽  
...  

BACKGROUND: Chest X-ray imaging has been proved as a powerful diagnostic method to detect and diagnose COVID-19 cases due to its easy accessibility, lower cost and rapid imaging time. OBJECTIVE: This study aims to improve efficacy of screening COVID-19 infected patients using chest X-ray images with the help of a developed deep convolutional neural network model (CNN) entitled nCoV-NET. METHODS: To train and to evaluate the performance of the developed model, three datasets were collected from resources of “ChestX-ray14”, “COVID-19 image data collection”, and “Chest X-ray collection from Indiana University,” respectively. Overall, 299 COVID-19 pneumonia cases and 1,522 non-COVID 19 cases are involved in this study. To overcome the probable bias due to the unbalanced cases in two classes of the datasets, ResNet, DenseNet, and VGG architectures were re-trained in the fine-tuning stage of the process to distinguish COVID-19 classes using a transfer learning method. Lastly, the optimized final nCoV-NET model was applied to the testing dataset to verify the performance of the proposed model. RESULTS: Although the performance parameters of all re-trained architectures were determined close to each other, the final nCOV-NET model optimized by using DenseNet-161 architecture in the transfer learning stage exhibits the highest performance for classification of COVID-19 cases with the accuracy of 97.1 %. The Activation Mapping method was used to create activation maps that highlights the crucial areas of the radiograph to improve causality and intelligibility. CONCLUSION: This study demonstrated that the proposed CNN model called nCoV-NET can be utilized for reliably detecting COVID-19 cases using chest X-ray images to accelerate the triaging and save critical time for disease control as well as assisting the radiologist to validate their initial diagnosis.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 885
Author(s):  
Vasile Berinde ◽  
Cristina Ţicală

The aim of this paper is to show analytically and empirically how ant-based algorithms for medical image edge detection can be enhanced by using an admissible perturbation of demicontractive operators. We thus complement the results reported in a recent paper by the second author and her collaborators, where they used admissible perturbations of demicontractive mappings as test functions. To illustrate this fact, we first consider some typical properties of demicontractive mappings and of their admissible perturbations and then present some appropriate numerical tests to illustrate the improvement brought by the admissible perturbations of demicontractive mappings when they are taken as test functions in ant-based algorithms for medical image edge detection. The edge detection process reported in our study considers both symmetric (Head CT and Brain CT) and asymmetric (Hand X-ray) medical images. The performance of the algorithm was tested visually with various images and empirically with evaluation of parameters.


1993 ◽  
Vol 34 (4) ◽  
pp. 346-350 ◽  
Author(s):  
S. Sone ◽  
T. Kasuga ◽  
F. Sakai ◽  
H. Hirano ◽  
K. Kubo ◽  
...  

Dual-energy subtraction digital tomosynthesis with pulsed X-ray and rapid kV switching was used to examine calcifications in pulmonary lesions. The digital tomosynthesis system used included a conventional fluororadiographic TV unit with linear tomographic capabilities, a high resolution videocamera, and an image processing unit. Low-voltage, high-voltage, and soft tissue subtracted or bone subtracted tomograms of any desired layer height were reconstructed from the image data acquired during a single tomographic swing. Calcifications, as well as their characteristics and distribution in pulmonary lesions, were clearly shown. The images also permitted discrimination of calcifications from dense fibrotic lesions. This technique was effective in demonstrating calcifications together with a solitary mass or disseminated nodules.


Sign in / Sign up

Export Citation Format

Share Document