In vitro modified microdosimetric kinetic model-based predictions for B14-150 cells survival in 450 MeV/u carbon ion beam with aluminum ridge filter for biologically optimized spread-out Bragg peak

Author(s):  
Aleksei Solovev ◽  
Marina Troshina ◽  
Pikalov Vladimir ◽  
Vyacheslav Saburov ◽  
Aleksandr Chernukha ◽  
...  

Abstract The relative biological efficiency of particle irradiation could be predicted with a wide variety of radiobiological models for various end-points. We validate the forecast of modified Microdosimetric Kinetic Model in vitro using combined data of reference Co-60 radiation and carbon ion plateau data for specific cell line to optimize the survival function in spread-out Bragg Peak obtained with an especially designed ridge filter. We used Geant4 Monte-Carlo software to simulate the fragment contribution along Bragg curve inside water phantom, open-source toolkit Survival to predict the expected linear-quadratic model parameters for each fragment, and in-house software to form the total survival curve in spread-out Bragg Peak. The irradiation was performed at U-70 synchrotron with an especially designed Aluminum ridge filter under the control of PTW and in-house ionization chambers. The cell clonogenic assay was conducted with the B14-150 cell line. The data analysis was accomplished using scipy and CERN ROOT. The clonogenic assay represents the survival in spread-out Bragg Peak at different points and qualitatively follows the modeled survival curve very well. The quantitative difference is within 3σ, and the deviation might be explained by the uncertainties of physical modeling using Monte-Carlo methods. Overall, the obtained results are promising for further usage in radiobiological studies or carbon ion radiotherapy. Shaping the survival curve in the region of interest (i.e., spread-out Bragg Peak) is a comprehensive task that requires high-performance computing approaches. Nevertheless, the method's potential application is related to the development of next-generation treatment planning systems for ion beams. This can open a wide range of improvements in patient treatment outcome, provide new optimized fractionation regimes or optimized dose delivery schemes, and serve as an entrance point to the translational science approach.

2012 ◽  
Vol 57 (6) ◽  
pp. 1717-1731 ◽  
Author(s):  
Yousuke Hara ◽  
Yoshihisa Takada ◽  
Kenji Hotta ◽  
Ryohei Tansho ◽  
Tetsuya Nihei ◽  
...  

Author(s):  
M.R. Raju ◽  
S.G. Carpenter ◽  
N. Tokita ◽  
J. Howard ◽  
J.T. Lyman

2010 ◽  
Vol 86 (9) ◽  
pp. 742-751 ◽  
Author(s):  
Ivan Petrović ◽  
Aleksandra Ristić-Fira ◽  
Danijela Todorović ◽  
Lela Korićanac ◽  
Lucia Valastro ◽  
...  

Author(s):  
Zahra Sadat Tabatabaeian ◽  
Mahdi Sadeghi ◽  
Mohammad Reza Ghasemi

In the passive method of proton therapy, range modulation wheel is used to scatter the single energy proton beam. It rounds and scatters the single energy proton beam to the spectrum of particles that covers cancerous tissue by a change in penetration depth. Geant4 is a Monte Carlo simulation platform for studying particles behaviour in a matter. We simulated proton therapy nozzle with Geant4. Geometric properties of this nozzle have some effects on this beam absorption plot. Concerning the relation between penetration depth and proton particle energy, we have designed a range modulation wheel to have an approximately flat plot of absorption energy. An iterative algorithm programming helped us to calculate the weight and thickness of each sector of range modulation wheel. Flatness and practical range are calculated for resulting spread-out Bragg peak.


2019 ◽  
Vol 9 (2) ◽  
pp. 97-107 ◽  
Author(s):  
Parth Patel ◽  
Yadvendrakumar Agrawal

Background: Levans are biopolymers of fructose, produced by different microorganisms. Fructose present in the levan micelles binds with the Glucose Transporter 5 (GLUT 5) which is overexpressed in the breast cancer cells. Objective: Increased solubility of paclitaxel by loading in the GLUT 5 transporter targeted levan-based micelles may enhance its bioavailability and facilitate a targeted delivery to the breast cancer cells. Methods and Results: Critical micelle concentration of levan with an average molecular weight of 800,000 Dalton was found to be 0.125µM corresponding to 0.1mg/mL using pyrene I3/I1 method. At critical micelle concentration (CMC), levan formed very mono-disperse (PDI-0.082) micellar particles with a particle size of 153.1 ± 2.31nm and -14.6 ± 2mV zeta potential. In-vitro drug release study was performed to identify the fit kinetic model along with Fourier transform infrared analysis and Differential scanning calorimetry studies. In-vitro kinetic model fitting revealed first-order drug release from the prepared micellar composition. The drug-loaded micellar composition was studied for its anticancer activity in breast cancer cell line. The IC50 value obtained was 1.525 ± 0.11nM on MCF7 cell line. Conclusion: Paclitaxel micelles showed a nineteen-fold improvement in the IC50 value compared to free paclitaxel. Hemocompatibility study was performed with a view to parenteral administration. This solution containing drug was found to be hemocompatible when added to bovine blood in 1:4 ration. Micelles are proven fairly compatible on the basis of hemolysis test results.


2007 ◽  
Vol 34 (2) ◽  
pp. 680-688 ◽  
Author(s):  
J. Hérault ◽  
N. Iborra ◽  
B. Serrano ◽  
P. Chauvel

Sign in / Sign up

Export Citation Format

Share Document