Single-atom catalysts cathode for lithium-Oxygen batteries:A review

Nano Futures ◽  
2021 ◽  
Author(s):  
Xin Lei ◽  
Bo Liu ◽  
Payam Ahmadian Koudakan ◽  
Hongge Pan ◽  
Yitai Qian ◽  
...  

Abstract Recently, single-atom catalysts (SACs) have been found to be one of the promising candidates for oxygen electrocatalysis in rechargeable lithium-oxygen batteries (LOBs), owing to their high oxygen electrocatalytic activity and high stability originated from their unique coordination environments and electronic properties. As a new type of catalysts for LOBs, the advancements have never been reviewed and discussed comprehensively. Herein, the breakthroughs in the design of various types of SACs as the cathode catalysts for LOBs are summarized, including Co-based, Ru-based, and other types of SACs. Moreover, considerable emphasis is placed on the correlations between the structural feature of the SAC active sites and the electrocatalytic performance of LOBs. Finally, perspective and challenges of SACs for practical LOBs are also provided. This review could provide an intensive understanding of SACs for designing efficient oxygen electrocatalysis and offers a useful guideline for the development of SACs in the field of LOBs.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanming Cai ◽  
Jiaju Fu ◽  
Yang Zhou ◽  
Yu-Chung Chang ◽  
Qianhao Min ◽  
...  

AbstractSingle-atom catalysts (SACs) are promising candidates to catalyze electrochemical CO2 reduction (ECR) due to maximized atomic utilization. However, products are usually limited to CO instead of hydrocarbons or oxygenates due to unfavorable high energy barrier for further electron transfer on synthesized single atom catalytic sites. Here we report a novel partial-carbonization strategy to modify the electronic structures of center atoms on SACs for lowering the overall endothermic energy of key intermediates. A carbon-dots-based SAC margined with unique CuN2O2 sites was synthesized for the first time. The introduction of oxygen ligands brings remarkably high Faradaic efficiency (78%) and selectivity (99% of ECR products) for electrochemical converting CO2 to CH4 with current density of 40 mA·cm-2 in aqueous electrolytes, surpassing most reported SACs which stop at two-electron reduction. Theoretical calculations further revealed that the high selectivity and activity on CuN2O2 active sites are due to the proper elevated CH4 and H2 energy barrier and fine-tuned electronic structure of Cu active sites.


2021 ◽  
Author(s):  
Hongling Yang ◽  
Xun Zhang ◽  
Yi Yu ◽  
Zheng Chen ◽  
Qinggang Liu ◽  
...  

Single-atom catalysts provide a pathway to elucidate the nature of catalytically active sites. However, keeping them stabilized during operation proves to be challenging. Herein, we employ cryptomelane-type octahedral molecular sieve...


2021 ◽  
Author(s):  
Changhyeok Choi ◽  
Sungho Yoon ◽  
Yousung Jung

The scaling relationship of methane activation via a radical-like transition state shifts toward a more reactive region with decreasing coordination number of the active sites.


2017 ◽  
Vol 5 (6) ◽  
pp. 2504-2507 ◽  
Author(s):  
Yaxiao Guo ◽  
Changshuai Shang ◽  
Erkang Wang

The CoS2/CoSe2 hybrid catalyst exhibits superior HER electrocatalytic activity as well as excellent electrochemical durability. CoSe2/DETA nanobelts not only afford an interconnected conducting network, but also demonstrate superior HER electrocatalytic activity. High dispersion and smaller CoS2 nanoparticles on the surface can provide abundant active sites for the HER.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Panlong Zhai ◽  
Mingyue Xia ◽  
Yunzhen Wu ◽  
Guanghui Zhang ◽  
Junfeng Gao ◽  
...  

AbstractRational design of single atom catalyst is critical for efficient sustainable energy conversion. However, the atomic-level control of active sites is essential for electrocatalytic materials in alkaline electrolyte. Moreover, well-defined surface structures lead to in-depth understanding of catalytic mechanisms. Herein, we report a single-atomic-site ruthenium stabilized on defective nickel-iron layered double hydroxide nanosheets (Ru1/D-NiFe LDH). Under precise regulation of local coordination environments of catalytically active sites and the existence of the defects, Ru1/D-NiFe LDH delivers an ultralow overpotential of 18 mV at 10 mA cm−2 for hydrogen evolution reaction, surpassing the commercial Pt/C catalyst. Density functional theory calculations reveal that Ru1/D-NiFe LDH optimizes the adsorption energies of intermediates for hydrogen evolution reaction and promotes the O–O coupling at a Ru–O active site for oxygen evolution reaction. The Ru1/D-NiFe LDH as an ideal model reveals superior water splitting performance with potential for the development of promising water-alkali electrocatalysts.


Author(s):  
Danni Zhou ◽  
Xinyuan Li ◽  
Huishan Shang ◽  
Fengjuan Qin ◽  
Wenxing Chen

Metal-organic framework (MOF) derived single-atom catalysts (SACs), featured unique active sites and adjustable topological structures, exhibit high electrocatalytic performance on carbon dioxide reduction reactions (CO2RR). By modulating elements and atomic...


2015 ◽  
Vol 3 (18) ◽  
pp. 10013-10019 ◽  
Author(s):  
Shiming Zhang ◽  
Heyou Zhang ◽  
Xing Hua ◽  
Shengli Chen

Tailored molecular architectures of FePc on nanocarbon supports from nanorods to uniform shells exhibit excellent electrocatalytic activity for the oxygen reduction reaction in alkaline solution.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guokang Han ◽  
Xue Zhang ◽  
Wei Liu ◽  
Qinghua Zhang ◽  
Zhiqiang Wang ◽  
...  

AbstractSingle-atom catalysts are becoming increasingly significant to numerous energy conversion reactions. However, their rational design and construction remain quite challenging due to the poorly understood structure–function relationship. Here we demonstrate the dynamic behavior of CuN2C2 site during operando oxygen reduction reaction, revealing a substrate-strain tuned geometry distortion of active sites and its correlation with the activity. Our best CuN2C2 site, on carbon nanotube with 8 nm diameter, delivers a sixfold activity promotion relative to graphene. Density functional theory and X-ray absorption spectroscopy reveal that reasonable substrate strain allows the optimized distortion, where Cu bonds strongly with the oxygen species while maintaining intimate coordination with C/N atoms. The optimized distortion facilitates the electron transfer from Cu to the adsorbed O, greatly boosting the oxygen reduction activity. This work uncovers the structure–function relationship of single-atom catalysts in terms of carbon substrate, and provides guidance to their future design and activity promotion.


2021 ◽  
Author(s):  
Jun Huang

<p>We develop a theory to investigate how energetic nonhomogeneity of active sites determines the overall activity of an electrocatalyst and how the evolution of the nonhomogeneity determines the overall durability. The simple theory is amenable to exact analytical solutions and thus fosters an in-depth transparent analysis. It is revealed that nonhomogeneity does not necessarily diminish the electrocatalytic activity; instead, the highest overall activity is obtained with a suitable level of nonhomogeneity that is commensurate with the mean property. The evolution kinetics of nonhomogeneity is described by using the Fokker-Planck theory. Exponential decay of the activity is predicted theoretically and confirmed experimentally. The present work represents a first step toward closing the gap between model and practical electrocatalysts using statistical considerations.</p>


Sign in / Sign up

Export Citation Format

Share Document