scholarly journals The interacting effects of storm surge intensification and sea-level rise on coastal resiliency: a high-resolution turbulence resolving case study

2020 ◽  
Vol 2 (11) ◽  
pp. 115002
Author(s):  
Mohamad Ibrahim Cheikh ◽  
Mostafa Momen
2017 ◽  
Vol 17 (9) ◽  
pp. 1559-1571 ◽  
Author(s):  
Yann Krien ◽  
Bernard Dudon ◽  
Jean Roger ◽  
Gael Arnaud ◽  
Narcisse Zahibo

Abstract. In the Lesser Antilles, coastal inundations from hurricane-induced storm surges pose a great threat to lives, properties and ecosystems. Assessing current and future storm surge hazards with sufficient spatial resolution is of primary interest to help coastal planners and decision makers develop mitigation and adaptation measures. Here, we use wave–current numerical models and statistical methods to investigate worst case scenarios and 100-year surge levels for the case study of Martinique under present climate or considering a potential sea level rise. Results confirm that the wave setup plays a major role in the Lesser Antilles, where the narrow island shelf impedes the piling-up of large amounts of wind-driven water on the shoreline during extreme events. The radiation stress gradients thus contribute significantly to the total surge – up to 100 % in some cases. The nonlinear interactions of sea level rise (SLR) with bathymetry and topography are generally found to be relatively small in Martinique but can reach several tens of centimeters in low-lying areas where the inundation extent is strongly enhanced compared to present conditions. These findings further emphasize the importance of waves for developing operational storm surge warning systems in the Lesser Antilles and encourage caution when using static methods to assess the impact of sea level rise on storm surge hazard.


2017 ◽  
Author(s):  
Yann Krien ◽  
Bernard Dudon ◽  
Jean Roger ◽  
Gaël Arnaud ◽  
Narcisse Zahibo

Abstract. In the Lesser Antilles, coastal inundations from hurricane-induced storm surges cause great threats to lives, properties, and ecosystems. Assessing current and future storm surge hazard with sufficient spatial resolution is of primary interest to help coastal planners and decision makers develop mitigation and adaptation measures. Here, we use wave-current numerical models and statistical methods to investigate worst case scenarios and 100-year surge levels for the case study of Martinique, under present climate or considering a potential sea-level rise. Results confirm that the wave setup plays a major role in Lesser Antilles, where the narrow island shelf impedes the piling-up of large amounts of wind-driven water on the shoreline during extreme events. The radiation stress gradients thus contribute significantly to the total surge, up to 100 % in some cases. The non-linear interactions of sea level rise with bathymetry and topography are generally found to be relatively small in Martinique, but can reach several tens of centimeters in low-lying areas where the inundation extent is strongly enhanced compared to present conditions. These findings further emphasize the importance of waves for developing operational storm surge warning systems in the Lesser Antilles, and encourage caution when using static methods to assess the impact of sea level rise on storm surge hazard.


Author(s):  
Inti Carro ◽  
Leonardo Seijo ◽  
Gustavo J. Nagy ◽  
Ximena Lagos ◽  
Ofelia Gutiérrez

Purpose This study aims to show a case study of ecosystem-based adaptation (EbA) measures to increase coastal system’s resilience to extreme weather events and sea-level rise (SLR) implemented at Kiyú (Uruguayan coast of the Rio de la Plata river estuary). Design/methodology/approach A participatory process involving the community and institutional stakeholders was carried out to select and prioritise adaptation measures to reduce the erosion of sandy beaches, dunes and bluffs due to extreme wind storm surge and rainfall, SLR and mismanagement practices. The recovery of coastal ecosystems was implemented through soft measures (green infrastructure) such as revegetation with native species, dune regeneration, sustainable drainage systems and the reduction of use pressures. Findings Main achievements of this case study include capacity building of municipal staff and stakeholders, knowledge exchanges with national-level decision makers and scientists and the incorporation of EbA approaches by subnational-level coastal governments. To consolidate EbA, the local government introduced innovations in the coastal management institutional structure. Originality/value The outcomes of the article include, besides the increase in the resilience of social-ecological systems, the strengthening of socio-institutional behaviour, structure and sustainability. This experience provides insights for developing a strategy for both Integrated Coastal Management and climate adaptation at the national scale.


2010 ◽  
Vol 1 (5) ◽  
pp. 729-740 ◽  
Author(s):  
Jaap C. J. Kwadijk ◽  
Marjolijn Haasnoot ◽  
Jan P. M. Mulder ◽  
Marco M. C. Hoogvliet ◽  
Ad B. M. Jeuken ◽  
...  

2014 ◽  
Vol 129 (1-2) ◽  
pp. 337-349 ◽  
Author(s):  
James E. Neumann ◽  
Kerry Emanuel ◽  
Sai Ravela ◽  
Lindsay Ludwig ◽  
Paul Kirshen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document