scholarly journals Collision of ionization waves in long discharge tubes

2019 ◽  
Vol 1 (2) ◽  
pp. 025004 ◽  
Author(s):  
A I Shishpanov ◽  
D O Ivanov ◽  
S A Kalinin
2020 ◽  
Vol 46 (10) ◽  
pp. 1015-1044 ◽  
Author(s):  
Yu. Z. Ionikh

Abstract The review is devoted to studies of the processes and mechanisms of ignition of a glow discharge in tubes whose length significantly exceeds their diameter (long discharge tubes) at low pressures (~10 Torr and lower) and moderate voltage rise rates (~1 kV/μs and lower). The electric field in such tubes before a breakdown is substantially nonuniform. Therefore, a breakdown occurs after an ionization wave (or waves) passes through the discharge gap at a speed of ~105–107 cm/s. This makes the characteristics of the breakdown in long tubes significantly different from the breakdown between large and closely spaced electrodes, where the electric field is uniform before the breakdown and where the Townsend or, under strong overvoltage, streamer mechanism is realized. On the other hand, the nature of these processes is very different from those occurring in nanosecond discharges, which arise at voltages with a steepness of ~1 kV/ns and higher and are associated with high-speed (~109 cm/s) ionization waves. The review is based on the materials of experimental and computational works published from 1938 to 2020. Breakdown processes, optical and electrical characteristics of the discharge gap during breakdown, and the influence of the external circuit parameters and external actions (shielding and illumination by external sources of visible radiation) are analyzed.


2011 ◽  
Vol 29 (8) ◽  
pp. 1355-1363 ◽  
Author(s):  
H. T. Cai ◽  
F. Yin ◽  
S. Y. Ma ◽  
I. W. McCrea

Abstract. In this paper, we present observational evidence for the trans-polar propagation of large-scale Traveling Ionospheric Disturbances (TIDs) from their nightside source region to the dayside. On 13 February 2001, the 32 m dish of EISCAT Svalbard Radar (ESR) was directing toward the geomagnetic pole at low elevation (30°) during the interval 06:00–12:00 UT (MLT ≈ UT + 3 h), providing an excellent opportunity to monitor the ionosphere F-region over the polar cap. The TIDs were first detected by the ESR over the dayside north polar cap, propagating equatorward, and were subsequently seen by the mainland UHF radar at auroral latitudes around geomagnetic local noon. The propagation properties of the observed ionization waves suggest the presence of a moderately large-scale TIDs, propagating across the northern polar cap from the night-time auroral source during substorm conditions. Our results agree with the theoretical simulations by Balthazor and Moffett (1999) in which poleward-propagating large-scale traveling atmospheric disturbances were found to be self-consistently driven by enhancements in auroral heating.


Author(s):  
Aleksei V Siasko ◽  
Yuri B Golubovskii ◽  
Sergei Valin

Abstract The work is devoted to calculating the flux of resonance photons towards the boundary of a cylindrical discharge tube of a finite size during the propagation of a pre-breakdown ionization wave of positive polarity. A cylindrical discharge tube of finite dimensions with argon at the pressure of p=1 Torr is considered. The propagation mechanisms of metastable and resonance atoms are compared. For the considered discharge conditions, the space-time distributions of metastable and resonance atoms are calculated. The manuscript presents a technique for calculating the flux of resonance photons onto the discharge tube wall with the account of the radiation trapping. It is shown that for the studied conditions the photon flux density towards the longitudinal boundary of the tube ahead of the ionization wave can reach 1013 cm-2s-1. The obtained results allow describing the appearance of seed electrons ahead of the positive ionization wavefront during its propagation due to the electron photoemission from the discharge tube wall.


1990 ◽  
Vol 67 (4) ◽  
pp. 1689-1693 ◽  
Author(s):  
F. L. Curzon ◽  
M. Suzuki ◽  
S. Mikoshiba

Sign in / Sign up

Export Citation Format

Share Document