scholarly journals Underwater gas self-transportation along the femtosecond laser-written open superhydrophobic surface microchannels (< 100 µm) for bubble/gas manipulation

Author(s):  
Jiale Yong ◽  
Qing Yang ◽  
Jinglan Huo ◽  
Xun Hou ◽  
Feng Chen

Abstract Underwater transportation of bubbles and gases has essential applications in manipulating and using gas, but there is still a great challenge to achieve this function at the microscopic level. Here, we report a strategy to self-transport gas along the laser-induced open superhydrophobic microchannel with a width less than 100 µm in water. The femtosecond laser can directly write superhydrophobic and underwater superaerophilic microgrooves on the polytetrafluoroethylene (PTFE) surface. In water, the single laser-induced microgroove and water medium generate a hollow microchannel. When the microchannel connects two superhydrophobic regions in water, the gas can be spontaneously transported from the small region to the large area along this hollow microchannel. The gas self-transportation can be extended to the laser-drilled microholes through a thin PTFE sheet. Anti-buoyancy unidirectional penetration is even achieved. The gas can overcome the buoyance of the bubble and spontaneously transport downward. The Laplace pressure difference drives the processes of spontaneous gas transportation and unidirectional bubble passage. We believe the property of gas self-transportation in the femtosecond laser-structured open superhydrophobic and underwater superaerophilic microgrooves/microholes has significant potential applications related to manipulating underwater gas.

2021 ◽  
Vol 13 (15) ◽  
pp. 8244
Author(s):  
Francesca Cirisano ◽  
Michele Ferrari

Highly hydrophobic and superhydrophobic materials obtained from recycled polymers represent an interesting challenge to recycle and reuse advanced performance materials after their first life. In this article, we present a simple and low-cost method to fabricate a superhydrophobic surface by employing polytetrafluoroethylene (PTFE) powder in polystyrene (PS) dispersion. With respect to the literature, the superhydrophobic surface (SHS) was prepared by utilizing a spray- coating technique at room temperature, a glass substrate without any further modification or thermal treatment, and which can be applied onto a large area and on to any type of material with some degree of fine control over the wettability properties. The prepared surface showed superhydrophobic behavior with a water contact angle (CA) of 170°; furthermore, the coating was characterized with different techniques, such as a 3D confocal profilometer, to measure the average roughness of the coating, and scanning electron microscopy (SEM) to characterize the surface morphology. In addition, the durability of SH coating was investigated by a long-water impact test (raining test), thermal treatment at high temperature, an abrasion test, and in acidic and alkaline environments. The present study may suggest an easy and scalable method to produce SHS PS/PTFE films that may find implementation in various fields.


Soft Matter ◽  
2021 ◽  
Author(s):  
Yuxing Shan ◽  
shuai liang ◽  
Xiangkai Mao ◽  
Jie Lu ◽  
Lili Liu ◽  
...  

Abstract. Stretchable elastomers with superhydrophobic surfaces have potential applications in wearable electronics. However, various types of damage inevitably occur on these elastomers in actual application, resulting in deterioration of the...


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Huan Yang ◽  
Kaichen Xu ◽  
Changwen Xu ◽  
Dianyuan Fan ◽  
Yu Cao ◽  
...  

Abstract Highly stretchable and robust superhydrophobic surfaces have attracted tremendous interest due to their broad application prospects. In this work, silicone elastomers were chosen to fabricate superhydrophobic surfaces with femtosecond laser texturing method, and high stretchability and tunable adhesion of the superhydrophobic surfaces were demonstrated successfully. To our best knowledge, it is the first time flexible superhydrophobic surfaces with a bearable strain up to 400% are fabricated by simple laser ablation. The test also shows that the strain brings no decline of water repellency but an enhancement to the superhydrophobic surfaces. In addition, a stretching-induced transition from “petal” state to “lotus” state of the laser-textured surface was also demonstrated by non-loss transportation of liquid droplets. Our results manifest that femtosecond laser ablating silicone elastomer could be a promising way for fabricating superhydrophobic surface with distinct merits of high stretchability, tunable adhesion, robustness, and non-fluorination, which is potentially useful for microfluidics, biomedicine, and liquid repellent skin.


2007 ◽  
Vol 23 ◽  
pp. 17-24 ◽  
Author(s):  
K. Ohura ◽  
Z. Sun ◽  
Akitake Makinouchi ◽  
Cristian Teodosiu

The Volume-CAD System Research Program aims at developing a core technology for data integration of computerized design, analysis, manufacturing, and testing processes. The potential applications of the Volume-CAD environment cover a large area of engineering and biomedical design. In this paper, we shall mainly focus on the VCAD-based software for the structural analysis and the simulation of casting processes.


Sign in / Sign up

Export Citation Format

Share Document