scholarly journals Hemi-Ellipsoidal microlensed fiber based on polishing and polymer technology

Author(s):  
Nadjiba Boulaiche ◽  
Philippe Rochard ◽  
Assia Guessoum ◽  
Nacer-Eddine Demagh ◽  
Monique Thual

Abstract This paper represents a development of a new advanced technology to fabricate and characterize micro-collimators with hemi-ellipsoidal microlenses at single-mode fibers outputs. The proposed method utilizes the controlled mechanical micromachining technique based on the variation of the speed of the fiber around its axis in both X and Y directions followed by the injection of a quantity of polydimethylsiloxane (PDMS) to form the hemi-ellipsoidal microlenses. The experimental results show that this technique allows to obtain a wide variety of ellipticity diameters ratios from 0.68 to 0.84. An elliptical ratio of radii of curvature Ry/Rx in a range of 0.51 at 0.86 is also obtained. In this investigation a mode field diameters MFD in an interval between 3.26 µm and 9.93 µm have been realized. The measurement results demonstrate that the proposed technology allows to fabricate hemi-ellipsoidal microlenses having an MFD ellipticity ratios of about 0.60 to 0.97 in near field promising for micro-collimator suitable to match an elliptical laser beam to the circular one of a fiber.

2011 ◽  
Vol 109 ◽  
pp. 222-227
Author(s):  
Zhi Gang Xiao ◽  
Yao Jiang ◽  
Xiao Xiao

A model to calculate the butt-joint coupling efficiency between a multi-mode fiber to a single-mode fiber is presented based on a mode field coupling theory. The dependence of the coupling efficiency between the multi- and single-mode fibers on the core radius of the multi-mode fiber is investigated. A experiment is conducted with 532nm laser to measure the butt joint coupling efficiency of a multi-mode fiber to a single-mode fiber. Good agreement is obtained between the experimental results and the theoretical predictions. A cascaded multi- and single-mode fiber relay system is proposed to transport a laser beam with high power and good beam quality.


2013 ◽  
Vol 20 (4) ◽  
pp. 697-704 ◽  
Author(s):  
Krzysztof Skorupski

Abstract This paper proposes a method for adjusting light waves propagating in systems composed of photonic fibers, light sources and detection elements. The paper presents the properties of these connections in terms of the loss of signal transmission. Different fiber core areas were analyzed, and measurements of the mode-field diameters (MFDs) of selected fiber structures are presented. The study analyzed two types of LMA (Large Mode Area) fiber structures, and the mode-field diameters of these structures were measured on the basis of the radiation distribution obtained under near-field conditions. The results are compared to the values obtained for a SMF-28 single-mode fiber. The LMA structures analyzed in the paper are characterized by low sensitivity of the MFD parameter to the length of transmitted waves, which creates the possibility of their use as intermediate fibers when connecting optical fibers of different diameters. In the wavelength range from 800 nm to 1600 nm, a 3.5% MFD change was observed for the first investigated LMA structure, and a 1% change was observed for the second. In addition, measurements of the mode-field diameters were also made using the transverse offset method for comparison of the results.


2021 ◽  
Vol 11 (24) ◽  
pp. 11604
Author(s):  
Xuran Zhang ◽  
Xiao Liang ◽  
Zhenxu Bai ◽  
Shuo Liu ◽  
Zhaoxin Geng ◽  
...  

A new collimator based on a homemade concentric multilayer-core fiber (CMCF) is proposed and experimentally demonstrated. This collimator was fabricated using a tail fiber with large mode area and single-mode operation. By exploiting the optical transmission matrix, the propagation characteristic and coupling mechanism of this CMCF-based collimator was introduced meticulously. The coupling losses of the laser beam using this collimator in the off-axis, angular, and axial deviations were analyzed separately. In order to determine the relationship between the geometric redundancy of this collimator and the effective mode field area of the tail fiber, the corresponding mathematical model was established. Through model calculation and experiment measurement, the coupling properties of the collimator were improved effectively. Compared with the common SMF-based collimator, the declination redundancy of the CMCF-based one improved by 20%, which could make the coupling of the optical fiber collimator easier. Therefore, this collimator has potential application value in the laser diode coupling unit and high-speed optical communication system.


1989 ◽  
Vol 25 (8) ◽  
pp. 493
Author(s):  
M. Ohashi ◽  
N. Shibata ◽  
K. Sato

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1744
Author(s):  
Fernando Rodríguez Varela ◽  
Manuel José López Morales ◽  
Rubén Tena Sánchez ◽  
Alfonso Tomás Muriel Barrado ◽  
Elena de la Fuente González ◽  
...  

This paper introduces a near-field measurement system concept for the fast testing of linear arrays suited for mass production scenarios where a high number of nominally identical antennas needs to be measured. The proposed system can compute the radiation pattern, directivity and gain on the array plane, as well as the array complex feeding coefficients in a matter of seconds. The concept is based on a multi-probe antenna array arranged in a line which measures the near field of the antenna under test in its array plane. This linear measurement is postprocessed with state-of-the-art single-cut transformation techniques. To compensate the lack of full 3D information, a previous complete characterization of a “Gold Antenna” is performed. This antenna is nominally identical to the many ones that will be measured with the proposed system. Therefore, the data extracted from this full characterization can be used to complement the postprocessing steps of the single-cut measurements. An X-band 16-probe demonstrator of the proposed system is implemented and introduced in this paper, explaining all the details of its architecture and operation steps. Finally, some measurement results are given to compare the developed demonstrator with traditional anechoic measurements, and show the potential capabilities of the proposed concept to perform fast and reliable measurements.


2021 ◽  
Vol 88 (8) ◽  
pp. 469
Author(s):  
A. S. Korsakov ◽  
A. A. Yuzhakova ◽  
D. D. Salimgareev ◽  
E. A. Korsakova ◽  
A. E. Lvov ◽  
...  

Micromachines ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 521 ◽  
Author(s):  
Georgia Konstantinou ◽  
Karolina Milenko ◽  
Kyriaki Kosma ◽  
Stavros Pissadakis

We demonstrate a three-port, light guiding and routing T-shaped configuration based on the combination of whispering gallery modes (WGMs) and micro-structured optical fibers (MOFs). This system includes a single mode optical fiber taper (SOFT), a slightly tapered MOF and a BaTiO3 microsphere for efficient light coupling and routing between these two optical fibers. The BaTiO3 glass microsphere is semi-immersed into one of the hollow capillaries of the MOF taper, while the single mode optical fiber taper is placed perpendicularly to the latter and in contact with the equatorial region of the microsphere. Experimental results are presented for different excitation and reading conditions through the WGM microspherical resonator, namely, through single mode optical fiber taper or the MOF. The experimental results indicate that light coupling between the MOF and the single mode optical fiber taper is facilitated at specific wavelengths, supported by the light localization characteristics of the BaTiO3 glass microsphere, with spectral Q-factors varying between 4.5 × 103 and 6.1 × 103, depending on the port and parity excitation.


Sign in / Sign up

Export Citation Format

Share Document