Improved Sintering Quality and Mechanical Properties of Peanut Husk Powder/Polyether Sulfone Composite for Selective Laser Sintering

Author(s):  
Aboubaker I.B. Idriss ◽  
Jian Li ◽  
Yanling Guo ◽  
Yangwei Wang ◽  
Elkhawad A. Elfaki ◽  
...  
2019 ◽  
Vol 9 (7) ◽  
pp. 1308 ◽  
Author(s):  
Rob Kleijnen ◽  
Manfred Schmid ◽  
Konrad Wegener

This work describes the production of a spherical polybutylene terephthalate (PBT) powder and its processing with selective laser sintering (SLS). The powder was produced via melt emulsification, a continuous extrusion-based process. PBT was melt blended with polyethylene glycol (PEG), creating an emulsion of spherical PBT droplets in a PEG matrix. Powder could be extracted after dissolving the PEG matrix phase in water. The extrusion settings were adjusted to optimize the size and yield of PBT particles. After classification, 79 vol. % of particles fell within a range of 10–100 µm. Owing to its spherical shape, the powder exhibited excellent flowability and packing properties. After powder production, the width of the thermal processing (sintering) window was reduced by 7.6 °C. Processing of the powder on a laser sintering machine was only possible with difficulties. The parts exhibited mechanical properties inferior to injection-molded specimens. The main reason lied in the PBT being prone to thermal degradation and hydrolysis during the powder production process. Melt emulsification in general is a process well suited to produce a large variety of SLS powders with exceptional flowability.


2019 ◽  
Vol 290 ◽  
pp. 08010
Author(s):  
Karolina Karolewska ◽  
Bogdan Ligaj

The most commonly used technology among the additive manufacturing is Direct Metal Laser Sintering (DMLS). This process is based on selective laser sintering (SLS). The method gained its popularity due to the possibility of producing metal parts of any geometry, which would be difficult or impossible to obtain by the use of conventional manufacturing techniques. Materials used in the elements manufacturing process are: titanium alloys (e.g. Ti6Al4V), aluminium alloy AlSi10Mg, etc. Elements printed from Ti6Al4V titanium alloy find their application in many industries. Details produced by additive technology are often used in medicine as skeletal, and dental implants. Another example of the DMLS elements use is the aerospace industry. In this area, the additive manufacturing technology produces, i.a. parts of turbines. In addition to the aerospace and medical industries, DMLS technology is also used in motorsport for exhaust pipes or the gearbox parts. The research objects are samples for static tests. These samples were made of Ti6Al4V alloy by the DMLS method and the rolling method from a drawn rod. The aim of the paper is the mechanical properties comparative analysis of the Ti6Al4V alloy produced by the DMLS method under static loading conditions and microstructure analysis of this material.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2079
Author(s):  
Huu Chinh Nguyen ◽  
Yanling Guo ◽  
Tat Thang Nguyen

A copolyester–limestone composite fabricated with selective laser sintering technology is a potential material for the repair of ancient brick structures damaged by the sun and rain, however the weather resistance of this material must be improved. Herein, UV-236 and UV-328 were employed as UV stabilizers and added into the composite. The results show that the addition of UV-326 and UV-328 effectively inhibited the degradation of CH and ester groups and the formation of hydroxyl, carbonyl, and carboxyl groups. Thus, the stabilizers significantly reduced the color change and decline in mechanical properties of the composite under sun and rain conditions. The proposed strategy can be used for the repair of damaged precious brick buildings.


Sign in / Sign up

Export Citation Format

Share Document