polyether sulfone
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 50)

H-INDEX

19
(FIVE YEARS 5)

2022 ◽  
pp. 1-9
Author(s):  
Hiroshi Nozaki ◽  
Yoshihiro Tange ◽  
Yoji Inada ◽  
Takashi Uchino ◽  
Nakanobu Azuma

<b><i>Introduction:</i></b> Ultrapurification of dialysis fluid has enabled highly efficient dialysis treatments. Online hemodiafiltration is one such treatment that uses a purified dialysis fluid as a supplemental fluid. In this method, an endotoxin retentive filter (ETRF) is used in the final step of dialysis fluid purification, with the aim of preventing leakage of endotoxins. Sodium hypochlorite and peracetic acid are used as disinfecting agents for the dialysis fluid pipes containing the ETRF; however, the effects of these agents on ETRF membrane pores have not been fully clarified. <b><i>Methods:</i></b> Water permeability (flux) and endotoxin permeability were assessed in 3 types of ETRFs made with different membrane materials: polyester polymer alloy (PEPA), polyether sulfone (PES), and polysulfone (PS). High-concentration sodium hypochlorite and 2 types of peracetic acid were used as disinfecting agents, and the changes in flux and the endotoxin sieving coefficient (SC) were measured. <b><i>Results:</i></b> After repeated use of high concentrations of sodium hypochlorite and peracetic acid, the PEPA and PES ETRFs did not permit passage of endotoxins, regardless of their flux. However, in the PS ETRF, the flux and endotoxin SC increased with the number of cleaning cycles. No differences were observed according to the concentration of peracetic acid disinfecting agents. <b><i>Conclusion:</i></b> PEPA and PES ETRFs completely prevent endotoxin leakage and can be disinfected at concentrations higher than the conventionally recommended concentration without affecting pore expansion. Even new PS ETRFs have low levels of endotoxin leakage, which increase after disinfection cycles using sodium hypochlorite and peracetic acid.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3021
Author(s):  
Lyaysan Amirova ◽  
Christian Brauner ◽  
Markus Grob ◽  
Nicolas Gort ◽  
Fabian Schadt ◽  
...  

A cure kinetics investigation of a high temperature-resistant phenol novolac cyanate ester toughened with polyether sulfone (CE-PES blend) was undertaken using non-isothermal differential scanning calorimetry. Thin ply carbon fiber prepreg, based on the CE-PES formulation, was fabricated, and plates for further in-situ cure monitoring were manufactured using automated fiber placement. Online monitoring of the curing behavior utilizing Optimold sensors and Online Resin State software from Synthesites was carried out. The estimation of the glass transition temperature and degree of cure allowed us to compare real time data with the calculated parameters of the CE-PES formulation. Alongside a good agreement between the observed online data and predicted model, the excellent performance of the developed sensors at temperatures above 260 °C was also demonstrated.


2021 ◽  
pp. 51508
Author(s):  
Lilan Huang ◽  
Shaofei Wang ◽  
Haimei Chen ◽  
Xiaoyang Hou ◽  
Han Zhang ◽  
...  

2021 ◽  
Author(s):  
foad gholami ◽  
sirus zinadini ◽  
Soheila Nakhjiri Kamrani ◽  
ali akbar zinatizadeh ◽  
Kiumars Bahrami

Abstract Modified graphene oxide with 5,10,15,20-tetrakis‐(4‐hexyloxyphenyl) ‐porphyrin and palladium (II) (signified by GO-CPTMS@Pd-TKHPP) prepared as a novel antifouling polyether sulfone (PES) blended nanofiller membrane. The membrane efficiency has been analyzed such as pure water flux (PWF), hydrophilicity and antifouling features. By increasing of modified graphene oxide percentage from 0 to 0.1 wt.% in polymer matrix the PWF was incremented from 14.35 to 37.33 kg/m2.h at 4bar. The membrane flux recovery ratio (FRR) has been investigated by applying powdered milk solution, the FRR results indicated that the 0.1 wt.% modified graphene oxide membrane showed the positive effect on fouling behavior with Rir and FRR value 8.24 and 91.73% respectively. The nanofiltration membrane performance was assessed applying the Direct Red 16 dye rejection. It was demonstrated that the optimal membranes (0.1 wt.% modified graphene oxide) had notable dye removal (99.58 % rejection). The results are also verified by measuring the scanning electron microscopy (SEM), water contact angle (WCA) and atomic microscopy analysis (AFM).


Sign in / Sign up

Export Citation Format

Share Document