scholarly journals Bioluminescence Assay for Detecting Cell Surface Membrane Protein Expression

2011 ◽  
Vol 9 (1) ◽  
pp. 31-39 ◽  
Author(s):  
Mieko Kato ◽  
Tomoki Chiba ◽  
Min Li ◽  
Yoshiro Hanyu
Cell Systems ◽  
2017 ◽  
Vol 4 (5) ◽  
pp. 516-529.e7 ◽  
Author(s):  
Dhimankrishna Ghosh ◽  
Cory C. Funk ◽  
Juan Caballero ◽  
Nameeta Shah ◽  
Katherine Rouleau ◽  
...  

2011 ◽  
Vol 100 (9) ◽  
pp. 3939-3950 ◽  
Author(s):  
Katsuaki Ito ◽  
Yasuo Uchida ◽  
Sumio Ohtsuki ◽  
Sanshiro Aizawa ◽  
Hirotaka Kawakami ◽  
...  

2017 ◽  
Vol 20 (1) ◽  
pp. 435 ◽  
Author(s):  
Jieyun Cao ◽  
Michael Ng ◽  
Melanie A Felmlee

Purpose: Monocarboxylate transporters (MCTs) are involved in the transport of monocarboxylates such as ketone bodies, lactate, and pharmaceutical agents. CD147 functions as an ancillary protein for MCT1 and MCT4 for plasma membrane trafficking. Sex differences in MCT1 and MCT4 have been observed in muscle and reproductive tissues; however, there is a paucity of information on MCT sex differences in tissues involved in drug disposition. The objective of the present study was to quantify hepatic MCT1, MCT4 and CD147 mRNA, total cellular and membrane protein expression in males, over the estrous cycle in females and in ovariectomized (OVX) females. Method: Liver samples were collected from females at the four estrous cycle stages (proestrus, estrus, metestrus, diestrus), OVX females and male Sprague-Dawley rats (N = 3 – 5). Estrus cycle stage of females was determined by vaginal lavage. mRNA and protein (total and membrane) expression of MCT1, MCT4 and CD147 was evaluated by qPCR and western blot analysis. Results: MCT1 mRNA and membrane protein expression varied with estrous cycle stage, with OVX females having higher expression than males, indicating that female sex hormones may play a role in MCT1 regulation. MCT4 membrane expression varied with estrous cycle stage with expression significantly lower than males. MCT4 membrane expression in OVX females was also lower than males, suggesting that androgens play a role in membrane expression of MCT4. Males had higher membrane CD147 expression, whereas there was no difference in whole cell protein and mRNA levels suggesting that androgens are involved in regulating CD147 membrane localization. Conclusions: This study demonstrates hepatic expression and membrane localization of MCT1, MCT4 and CD147 are regulated by sex hormones. Sex differences in hepatic MCT expression may lead to altered drug disposition, so it is critical to elucidate the underlying mechanisms in the sex hormone-dependent regulation of MCT expression. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


2012 ◽  
Vol 23 (15) ◽  
pp. 2917-2929 ◽  
Author(s):  
Emily Deutsch ◽  
Aubrey V. Weigel ◽  
Elizabeth J. Akin ◽  
Phil Fox ◽  
Gentry Hansen ◽  
...  

Voltage-gated K+ (Kv) channels regulate membrane potential in many cell types. Although the channel surface density and location must be well controlled, little is known about Kv channel delivery and retrieval on the cell surface. The Kv2.1 channel localizes to micron-sized clusters in neurons and transfected human embryonic kidney (HEK) cells, where it is nonconducting. Because Kv2.1 is postulated to be involved in soluble N-ethylmaleimide–sensitive factor attachment protein receptor–mediated membrane fusion, we examined the hypothesis that these surface clusters are specialized platforms involved in membrane protein trafficking. Total internal reflection–based fluorescence recovery after photobleaching studies and quantum dot imaging of single Kv2.1 channels revealed that Kv2.1-containing vesicles deliver cargo at the Kv2.1 surface clusters in both transfected HEK cells and hippocampal neurons. More than 85% of cytoplasmic and recycling Kv2.1 channels was delivered to the cell surface at the cluster perimeter in both cell types. At least 85% of recycling Kv1.4, which, unlike Kv2.1, has a homogeneous surface distribution, is also delivered here. Actin depolymerization resulted in Kv2.1 exocytosis at cluster-free surface membrane. These results indicate that one nonconducting function of Kv2.1 is to form microdomains involved in membrane protein trafficking. This study is the first to identify stable cell surface platforms involved in ion channel trafficking.


Sign in / Sign up

Export Citation Format

Share Document