scholarly journals Multi-model Order ICA: A Data-driven Method for Evaluating Brain Functional Network Connectivity Within and Between Multiple Spatial Scales

2021 ◽  
Author(s):  
Xing Meng ◽  
Armin Iraji ◽  
Zening Fu ◽  
Peter Kochunov ◽  
Aysenil Belger ◽  
...  
2021 ◽  
Vol 15 ◽  
Author(s):  
Zening Fu ◽  
Armin Iraji ◽  
Jing Sui ◽  
Vince D. Calhoun

Psychosis disorders share overlapping symptoms and are characterized by a wide-spread breakdown in functional brain integration. Although neuroimaging studies have identified numerous connectivity abnormalities in affective and non-affective psychoses, whether they have specific or unique connectivity abnormalities, especially within the early stage is still poorly understood. The early phase of psychosis is a critical period with fewer chronic confounds and when treatment intervention may be most effective. In this work, we examined whole-brain functional network connectivity (FNC) from both static and dynamic perspectives in patients with affective psychosis (PAP) or with non-affective psychosis (PnAP) and healthy controls (HCs). A fully automated independent component analysis (ICA) pipeline called “Neuromark” was applied to high-quality functional magnetic resonance imaging (fMRI) data with 113 early-phase psychosis patients (32 PAP and 81 PnAP) and 52 HCs. Relative to the HCs, both psychosis groups showed common abnormalities in static FNC (sFNC) between the thalamus and sensorimotor domain, and between subcortical regions and the cerebellum. PAP had specifically decreased sFNC between the superior temporal gyrus and the paracentral lobule, and between the cerebellum and the middle temporal gyrus/inferior parietal lobule. On the other hand, PnAP showed increased sFNC between the fusiform gyrus and the superior medial frontal gyrus. Dynamic FNC (dFNC) was investigated using a combination of a sliding window approach, clustering analysis, and graph analysis. Three reoccurring brain states were identified, among which both psychosis groups had fewer occurrences in one antagonism state (state 2) and showed decreased network efficiency within an intermediate state (state 1). Compared with HCs and PnAP, PAP also showed a significantly increased number of state transitions, indicating more unstable brain connections in affective psychosis. We further found that the identified connectivity features were associated with the overall positive and negative syndrome scale, an assessment instrument for general psychopathology and positive symptoms. Our findings support the view that subcortical-cortical information processing is disrupted within five years of the initial onset of psychosis and provide new evidence that abnormalities in both static and dynamic connectivity consist of shared and unique features for the early affective and non-affective psychoses.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Jingjing Su ◽  
Shiyu Ban ◽  
Mengxing Wang ◽  
Fengchun Hua ◽  
Liang Wang ◽  
...  

Abstract Background Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) manifests principally as a suite of cognitive impairments, particularly in the executive domain. Executive functioning requires the dynamic coordination of neural activity over large-scale networks. It remains unclear whether changes in resting-state brain functional network connectivity and regional homogeneities (ReHos) underly the mechanisms of executive dysfunction evident in CADASIL patients. Methods In this study, 22 CADASIL patients and 44 matched healthy controls underwent resting-state functional magnetic resonance imaging (fMRI). Independent component analysis (ICA) was used to measure functional brain network connectivity, and ReHos were calculated to evaluate local brain activities. We used seed-based functional connectivity (FC) analyses to determine whether dysfunctional areas (as defined by ReHos) exhibited abnormal FC with other brain areas. Relationships among the mean intra-network connectivity z-scores of dysfunctional areas within functional networks, and cognitive scores were evaluated using Pearson correlation analyses. Results Compared to the controls, CADASIL patients exhibited decreased intra-network connectivity within the bilateral lingual gyrus (LG) and the right cuneus (CU) (thus within the visual network [VIN)], and within the right precuneus (Pcu), inferior frontal gyrus (IFG), and precentral gyrus (thus within the frontal network [FRN]). Compared to the controls, patients also exhibited significantly lower ReHos in the right precuneus and cuneus (Pcu/CU), visual association cortex, calcarine gyri, posterior cingulate, limbic lobe, and weaker FC between the right Pcu/CU and the bilateral parahippocampal gyrus (PHG), and between the right Pcu/CU and the right postcentral gyrus. Notably, the mean connectivity z-scores of the bilateral LG and the right CU within the VIN were positively associated with compromised attention, calculation and delayed recall as revealed by tests of the various cognitive domains explored by the Mini-Mental State Examination. Conclusions The decreases in intra-network connectivity within the VIN and FRN and reduced local brain activity in the posterior parietal area suggest that patients with CADASIL may exhibit dysfunctional visuomotor behaviors (a hallmark of executive function), and that all visual information processing, visuomotor planning, and movement execution may be affected.


2018 ◽  
Author(s):  
Dongdong Lin ◽  
Kent E. Hutchison ◽  
Salvador Portillo ◽  
Victor Vegara ◽  
Jarrod M. Ellingson ◽  
...  

AbstractRecent studies have shown a critical role of the gastrointestinal microbiome in brain and behavior via the complex gut–microbiome–brain axis, however, the influence of the oral microbiome in neurological processes is much less studied, especially in response to the stimuli in the oral microenvironment such as smoking. Additionally, given the complex structural and functional networks in brain system, our knowledge about the relationship between microbiome and brain function in specific brain circuits is still very limited. In this pilot work, we leveraged next generation microbial sequencing with functional neuroimaging techniques to enable the delineation of microbiome-brain network links as well as their relationship to cigarette smoking. Thirty smokers and 30 age- and sex- matched non-smokers were recruited for measuring both microbial community and brain functional networks. Statistical analyses were performed to demonstrate the influence of smoking on the abundance of the constituents within the oral microbial community and functional network connectivity among brain regions as well as the associations between microbial shifts and the brain functional network connectivity alternations. Compared to non-smokers, we found a significant decrease in beta diversity (p = 6×10−3) in smokers and identified several classes (Betaproteobacteria, Spirochaetia, Synergistia, and Mollicutes) as having significant alterations in microbial abundance. Taxonomic analyses demonstrate that the microbiota with altered abundance are mainly involved in pathways related to cell processes, DNA repair, immune system, and neurotransmitters signaling. One brain functional network connectivity component was identified to have a significant difference between smokers and nonsmokers (p = 0.033), mainly including connectivity between brain default network and other task-positive networks. The brain functional component was also significantly associated with some smoking related oral microbiota, suggesting a potential link between smoking-induced oral microbiome dysbiosis and brain functional connectivity, possibly through immunological and neurotransmitter signaling pathways. This work is the first attempt to link oral microbiome and brain functional networks, and provides support for future work in characterizing the role of oral microbiome in mediating smoking effects on brain activity.


Sign in / Sign up

Export Citation Format

Share Document