Direct Reprogramming of Mice Skin Fibroblasts into Insulin-Producing Cells In Vitro

Author(s):  
Israa S. Salman ◽  
Ahmed Majeed Al-Shammari ◽  
Mukhtar Khamis Haba
2021 ◽  
Author(s):  
Rosa Gasa ◽  
Marta Fontcuberta-PiSunyer ◽  
Ainhoa García-Alamán ◽  
Élia Prades ◽  
Noèlia Téllez ◽  
...  

Direct lineage reprogramming of one somatic cell into another bypassing an intermediate pluripotent state has emerged as an alternative to embryonic or induced pluripotent stem cell differentiation to generate clinically relevant cell types. One cell type of clinical interest is the pancreatic β cell that secretes insulin and whose loss and/or dysfunction leads to diabetes. Generation of functional β-like cells from developmentally related somatic cell types (pancreas, liver, gut) has been achieved via enforced expression of defined sets of transcription factors. However, clinical applicability of these findings is challenging because the starting cell types are not easily obtainable. Skin fibroblasts are accessible and easily manipulated cells that could be a better option, but available studies indicate that their competence to give rise to β cells through similar direct reprogramming approaches is limited. Here, using human skin fibroblasts and a protocol that ensures high and consistent expression of adenovirus-encoded reprogramming factors, we show that the transcription factor cocktail consisting of Pdx1, Ngn3, MafA, Pax4 and Nkx2-2 activates key β cell genes and down-regulates the fibroblast transcriptional program. The converted cells produce insulin and exhibit intracellular calcium responses to glucose and/or membrane depolarization. Furthermore, they secrete insulin in response to glucose in vitro and after transplantation in vivo. These findings demonstrate that transcription factor-mediated direct reprogramming of human fibroblasts is a feasible strategy to generate insulin-producing cells.


2017 ◽  
Vol 4 (S) ◽  
pp. 91
Author(s):  
Phuc Van Pham ◽  
Ngoc Bich Vu ◽  
Thuy Thi-Thanh Dao ◽  
Ha Thi-Ngan Le ◽  
Lan Thi Phi ◽  
...  

Endothelial progenitor cells (EPCs) play an important role in angiogenesis. However, they exist in limited numbers in the human body. This study was aimed to produce EPCs, for autologous transplantation, using direct reprogramming of skin fibroblasts under GMP-compliant conditions. Fibroblasts were collected and cultured from the skin in DMEM/F12 medium supplemented with 5% activated platelet-rich plasma and 1% antibiotic-antimycotic solution. They were then transfected with mRNA ETV2 and incubated in culture medium under hypoxia (5% oxygen) for 14 d. Phenotype analysis of transfected cells confirmed that single-factor ETV2 transfection successfully reprogrammed dermal fibroblasts into functional EPCs. Our results showed that ETV2 mRNA combined with hypoxia can give rise to functional EPCs. The cells exhibited functional phenotypes similar to endothelial cells derived from umbilical cord vein; they expressed CD31 and VEGFR2, and formed capillary-like structures in vitro. Moreover, these EPCs could significantly improve hindlimb ischemia in mouse models. Although the direct conversion efficacy was low (3.12 ± 0.98%), altogether our study demonstrates that functional EPCs can be produced from fibroblasts and can be used in clinical applications.


Author(s):  
S. E. Miller ◽  
G. B. Hartwig ◽  
R. A. Nielsen ◽  
A. P. Frost ◽  
A. D. Roses

Many genetic diseases can be demonstrated in skin cells cultured in vitro from patients with inborn errors of metabolism. Since myotonic muscular dystrophy (MMD) affects many organs other than muscle, it seems likely that this defect also might be expressed in fibroblasts. Detection of an alteration in cultured skin fibroblasts from patients would provide a valuable tool in the study of the disease as it would present a readily accessible and controllable system for examination. Furthermore, fibroblast expression would allow diagnosis of fetal and presumptomatic cases. An unusual staining pattern of MMD cultured skin fibroblasts as seen by light microscopy, namely, an increase in alcianophilia and metachromasia, has been reported; both these techniques suggest an altered glycosaminoglycan metabolism An altered growth pattern has also been described. One reference on cultured skin fibroblasts from a different dystrophy (Duchenne Muscular Dystrophy) reports increased cytoplasmic inclusions seen by electron microscopy. Also, ultrastructural alterations have been reported in muscle and thalamus biopsies from MMD patients, but no electron microscopical data is available on MMD cultured skin fibroblasts.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 117-LB
Author(s):  
LUKE R. LEMMERMAN ◽  
MARIA ANGELICA RINCON-BENAVIDES ◽  
SARAH A. TERSEY ◽  
BRITANI N. BLACKSTONE ◽  
HEATHER M. POWELL ◽  
...  

Author(s):  
Bruna O. S. Câmara ◽  
Bruno M. Bertassoli ◽  
Natália M. Ocarino ◽  
Rogéria Serakides

The use of stem cells in cell therapies has shown promising results in the treatment of several diseases, including diabetes mellitus, in both humans and animals. Mesenchymal stem cells (MSCs) can be isolated from various locations, including bone marrow, adipose tissues, synovia, muscles, dental pulp, umbilical cords, and the placenta. In vitro, by manipulating the composition of the culture medium or transfection, MSCs can differentiate into several cell lineages, including insulin-producing cells (IPCs). Unlike osteogenic, chondrogenic, and adipogenic differentiation, for which the culture medium and time are similar between studies, studies involving the induction of MSC differentiation in IPCs differ greatly. This divergence is usually evident in relation to the differentiation technique used, the composition of the culture medium, the cultivation time, which can vary from a few hours to several months, and the number of steps to complete differentiation. However, although there is no “gold standard” differentiation medium composition, most prominent studies mention the use of nicotinamide, exedin-4, ß-mercaptoethanol, fibroblast growth factor b (FGFb), and glucose in the culture medium to promote the differentiation of MSCs into IPCs. Therefore, the purpose of this review is to investigate the stages of MSC differentiation into IPCs both in vivo and in vitro, as well as address differentiation techniques and molecular actions and mechanisms by which some substances, such as nicotinamide, exedin-4, ßmercaptoethanol, FGFb, and glucose, participate in the differentiation process.


2021 ◽  
Vol 339 ◽  
pp. 113620
Author(s):  
Grazyna Debska-Vielhaber ◽  
Irina Miller ◽  
Viktoriya Peeva ◽  
Werner Zuschratter ◽  
Jaroslaw Walczak ◽  
...  

1984 ◽  
Vol 12 (2) ◽  
pp. 89-97
Author(s):  
Graham R. Elliott ◽  
H.E. Amos ◽  
James W. Bridges

The rate of growth of normal human skin fibroblasts was inhibited in a dose related, reversible, fashion by practolol (N-4-(2-hydroxy)-3 (1-methyl)-aminopropoxyphenylacetamine) (ID50 1.35 ± 0.14 x 10-3M), propranolol (1-(isopropylamino)-3(1-naphthyl-oxy)-2-propranolol) (ID50 0.145 ± 0.02 x 10-3M) and paracetamol (N-(4-hydroxyphenyl) acetamide) (ID50 0.85 ± 0.2 x 10-3M). Skin fibroblasts isolated from a psoriasis patient were more sensitive towards practolol (ID50 0.48 ± 0.14 x 10-3M) and propranolol (ID50 0.032 ± 0.002 x 10-3M), but less sensitive towards paracetamol (ID50 1.3 ± 0.07 x 10-3M). In vitro generated metabolites of practolol, using normal or Arochlor 1254-pretreated hamster liver preparations, and structural analogues of practolol had no effect upon the growth of either cell type.


Sign in / Sign up

Export Citation Format

Share Document