Characterization of Seven Processed Pseudogenes of Nucleophosmin/B23 in the Human Genome

1993 ◽  
Vol 12 (2) ◽  
pp. 149-156 ◽  
Author(s):  
QING-RONG LIU ◽  
PUI K. CHAN
2021 ◽  
Vol 22 (9) ◽  
pp. 4707
Author(s):  
Mariana Lopes ◽  
Sandra Louzada ◽  
Margarida Gama-Carvalho ◽  
Raquel Chaves

(Peri)centromeric repetitive sequences and, more specifically, satellite DNA (satDNA) sequences, constitute a major human genomic component. SatDNA sequences can vary on a large number of features, including nucleotide composition, complexity, and abundance. Several satDNA families have been identified and characterized in the human genome through time, albeit at different speeds. Human satDNA families present a high degree of sub-variability, leading to the definition of various subfamilies with different organization and clustered localization. Evolution of satDNA analysis has enabled the progressive characterization of satDNA features. Despite recent advances in the sequencing of centromeric arrays, comprehensive genomic studies to assess their variability are still required to provide accurate and proportional representation of satDNA (peri)centromeric/acrocentric short arm sequences. Approaches combining multiple techniques have been successfully applied and seem to be the path to follow for generating integrated knowledge in the promising field of human satDNA biology.


PLoS Genetics ◽  
2005 ◽  
Vol preprint (2007) ◽  
pp. e136
Author(s):  
Hualin Xi ◽  
Hennady P Shulha ◽  
Jane M Lin ◽  
Teresa R Vales ◽  
Yutao Fu ◽  
...  

2001 ◽  
Vol 114 (14) ◽  
pp. 2569-2575 ◽  
Author(s):  
Michael Hesse ◽  
Thomas M. Magin ◽  
Klaus Weber

We screened the draft sequence of the human genome for genes that encode intermediate filament (IF) proteins in general, and keratins in particular. The draft covers nearly all previously established IF genes including the recent cDNA and gene additions, such as pancreatic keratin 23, synemin and the novel muscle protein syncoilin. In the draft, seven novel type II keratins were identified, presumably expressed in the hair follicle/epidermal appendages. In summary, 65 IF genes were detected, placing IF among the 100 largest gene families in humans. All functional keratin genes map to the two known keratin clusters on chromosomes 12 (type II plus keratin 18) and 17 (type I), whereas other IF genes are not clustered. Of the 208 keratin-related DNA sequences, only 49 reflect true keratin genes, whereas the majority describe inactive gene fragments and processed pseudogenes. Surprisingly, nearly 90% of these inactive genes relate specifically to the genes of keratins 8 and 18. Other keratin genes, as well as those that encode non-keratin IF proteins, lack either gene fragments/pseudogenes or have only a few derivatives. As parasitic derivatives of mature mRNAs, the processed pseudogenes of keratins 8 and 18 have invaded most chromosomes, often at several positions. We describe the limits of our analysis and discuss the striking unevenness of pseudogene derivation in the IF multigene family. Finally, we propose to extend the nomenclature of Moll and colleagues to any novel keratin.


Gene ◽  
2004 ◽  
Vol 341 ◽  
pp. 189-197 ◽  
Author(s):  
Matthias Christian Kugler ◽  
Markus Gerhard ◽  
Andreas Schnelzer ◽  
Katja Borzym ◽  
Richard Reinhardt ◽  
...  

2015 ◽  
Author(s):  
Clara Bodelon ◽  
Micahel Untereiner ◽  
Svetlana Vinokurova ◽  
Mitchell J. Machiela ◽  
Nicolas Wentzensen

2020 ◽  
Vol 48 (11) ◽  
pp. 6157-6169 ◽  
Author(s):  
Elisa Vilardo ◽  
Fabian Amman ◽  
Ursula Toth ◽  
Annika Kotter ◽  
Mark Helm ◽  
...  

Abstract The TRM10 family of methyltransferases is responsible for the N1-methylation of purines at position 9 of tRNAs in Archaea and Eukarya. The human genome encodes three TRM10-type enzymes, of which only the mitochondrial TRMT10C was previously characterized in detail, whereas the functional significance of the two presumably nuclear enzymes TRMT10A and TRMT10B remained unexplained. Here we show that TRMT10A is m1G9-specific and methylates a subset of nuclear-encoded tRNAs, whilst TRMT10B is the first m1A9-specific tRNA methyltransferase found in eukaryotes and is responsible for the modification of a single nuclear-encoded tRNA. Furthermore, we show that the lack of G9 methylation causes a decrease in the steady-state levels of the initiator tRNAiMet-CAT and an alteration in its further post-transcriptional modification. Our work finally clarifies the function of TRMT10A and TRMT10B in vivo and provides evidence that the loss of TRMT10A affects the pool of cytosolic tRNAs required for protein synthesis.


Sign in / Sign up

Export Citation Format

Share Document