Assessment of Internalin A Gene Sequences and Cell Adhesion and Invasion Capacity of Listeria monocytogenes Strains Isolated from Foods of Animal and Related Origins

Author(s):  
Margareti Medeiros ◽  
Virgilio Hipolito Lemos de Castro ◽  
Ana Lourdes Arrais de Alencar Mota ◽  
Marita Gimenez Pereira ◽  
Elaine Cristina Pereira De Martinis ◽  
...  
Toxins ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 60 ◽  
Author(s):  
Luca Dellafiora ◽  
Virginia Filipello ◽  
Chiara Dall’Asta ◽  
Guido Finazzi ◽  
Gianni Galaverna ◽  
...  

Listeria monocytogenes is a widespread foodborne pathogen of high concern and internalin A is an important virulence factor that mediates cell invasion upon the interaction with the host protein E-cadherin. Nonsense mutations of internalin A are known to reduce virulence. Although missense mutations are largely overlooked, they need to be investigated in respect to their effects in cell invasion processes. This work presented a computational workflow to early characterize internalin A missense mutations. The method reliably estimated the effects of a set of engineered missense mutations in terms of their effects on internalin A–E-cadherin interaction. Then, the effects of mutations of an internalin A variant from a L. monocytogenes isolate were calculated. Mutations showed impairing effects on complex stability providing a mechanistic explanation of the low cells invasion capacity previously observed. Overall, our results provided a rational approach to explain the effects of internalin A missense mutations. Moreover, our findings highlighted that the strength of interaction may not directly relate to the cell invasion capacity reflecting the non-exclusive role of internalin A in determining the virulence of L. monocytogenes. The workflow could be extended to other virulence factors providing a promising platform to support a better molecular understanding of L. monocytogenes epidemiology.


2013 ◽  
Vol 55 (1) ◽  
pp. 63 ◽  
Author(s):  
Ursula Fürnkranz ◽  
Karin Siebert-Gulle ◽  
Renate Rosengarten ◽  
Michael P Szostak

2000 ◽  
Vol 68 (12) ◽  
pp. 7061-7068 ◽  
Author(s):  
Shamila Nair ◽  
Eliane Milohanic ◽  
Patrick Berche

ABSTRACT We studied the role of two members of the 100-kDa heat shock protein family, the ClpC and ClpE ATPases, in cell adhesion and invasion of the intracellular pathogen Listeria monocytogenes. During the early phase of infection, aclpC mutant failed to disseminate to hepatocytes in the livers of infected mice whereas the invasive capacity of aclpE mutant remained unchanged. This was confirmed by a confocal microscopy study on infected cultured hepatocyte and epithelial cell lines, showing a strong reduction of cell invasion only by the clpC mutant. Western blot analysis with specific antisera showed that the absence of ClpC, but not that of ClpE, reduced expression of the virulence factors InlA, InlB, and ActA. ClpC-dependent modulation of these factors occurs at the transcriptional level with a reduction in the transcription ofinlA, inlB, and actA in theclpC mutant, in contrast to the clpE mutant. This work provides the first evidence that, in addition to promoting escape from the phagosomes, ClpC is required for adhesion and invasion and modulates the expression of InlA, InlB, and ActA, further supporting the major role of the Clp chaperones in the virulence of intracellular pathogens.


2021 ◽  
pp. 108201322110132
Author(s):  
Mariem Somrani ◽  
Hajer Debbabi ◽  
Alfredo Palop

The antibacterial and antibiofilm activity of essential oil of clove against Listeria monocytogenes and Salmonella Enteritidis were investigated. The chemical composition of the oil was characterized by gas chromatography–mass spectrometry. Stock solution of the essential oil of clove was prepared in 95% (v/v) ethanol (EOC). The antibacterial assays were performed by disk diffusion assay and minimal inhibitory concentration (MIC). The biomass of adhered cells and preformed biofilms after incubation with different concentrations of EOC was assessed by crystal violet. Eugenol was the major bioactive compound of clove essential oil, accounting for 78.85% of the total composition. The MIC values for L. monocytogenes and S. Enteritidis were 0.05 mg/ml and 0.1 mg/ml, respectively. The initial cell adhesion at MIC was inhibited by 61.8% for L. monocytogenes and 49.8% for S. Enteritidis. However, the effect of EOC was less marked on biofilm eradication than on cell adhesion. At MIC and within 1 hour of incubation with the EOC, the preformed biofilms were reduced by 30.2% and 20.3% for L. monocytogenes and S. Enteritidis, respectively. These results suggest that sanitizers based on clove essential oil could be a potential strategy to control biofilms in food-related environments.


2012 ◽  
Vol 6 (5) ◽  
pp. 1121-1125 ◽  
Author(s):  
YUANYUAN ZHANG ◽  
JIHUA LIU ◽  
JUNPING KOU ◽  
JUN YU ◽  
BOYANG YU

1998 ◽  
Vol 66 (7) ◽  
pp. 3420-3422 ◽  
Author(s):  
Renaud Jonquières ◽  
Hélène Bierne ◽  
Jérôme Mengaud ◽  
Pascale Cossart

ABSTRACT Internalin is a surface protein that mediates entry ofListeria monocytogenes EGD into epithelial cells expressing the cell adhesion molecule human E-cadherin or its chicken homolog, L-CAM, which act as receptors for internalin. After observing that entry of L. monocytogenes LO28 into S180 fibroblasts, in contrast to that of EGD, did not increase after transfection with L-CAM, we examined both the expression and the structure of internalin in strain LO28. We discovered a nonsense mutation in inlA which results in a truncated protein released in the culture medium. Mutations leading to release of internalin were also detected in clinical and food isolates. These results question the role of internalin as a virulence factor in murine listeriosis.


Sign in / Sign up

Export Citation Format

Share Document