scholarly journals Restricted Transgene Expression in the Brain with Cell-Type Specific Neuronal Promoters

2012 ◽  
Vol 23 (4) ◽  
pp. 242-254 ◽  
Author(s):  
Aurélie Delzor ◽  
Noelle Dufour ◽  
Fanny Petit ◽  
Martine Guillermier ◽  
Diane Houitte ◽  
...  
2012 ◽  
pp. 121017063203000 ◽  
Author(s):  
Aurélie Delzor ◽  
Noelle Dufour ◽  
Fanny Petit ◽  
Martine Guillermier ◽  
Diane Houitte ◽  
...  

Gene Therapy ◽  
2007 ◽  
Vol 14 (7) ◽  
pp. 575-583 ◽  
Author(s):  
J P Chhatwal ◽  
S E Hammack ◽  
A M Jasnow ◽  
D G Rainnie ◽  
K J Ressler

2021 ◽  
Author(s):  
Firat Terzi ◽  
Johannes Knabbe ◽  
Sidney B. Cambridge

SummaryGenetic engineering of quintuple transgenic brain tissue was used to establish a low background, Cre-dependent version of the inducible Tet-On system for fast, cell type-specific transgene expression in vivo. Co-expression of a constitutive, Cre-dependent fluorescent marker selectively allowed single cell analyses before and after inducible, tet-dependent transgene expression. Here, we used this method for acute, high-resolution manipulation of neuronal activity in the living brain. Single induction of the potassium channel Kir2.1 produced cell type-specific silencing within hours that lasted for at least three days. Longitudinal in vivo imaging of spontaneous calcium transients and neuronal morphology demonstrated that prolonged silencing did not alter spine densities or synaptic input strength. Furthermore, selective induction of Kir2.1 in parvalbumin interneurons increased the activity of surrounding neurons in a distance-dependent manner. This high-resolution, inducible interference and interval imaging of individual cells (high I5, ‘HighFive’) method thus allows visualizing temporally precise, genetic perturbations of defined cells.


Neurogenesis ◽  
2015 ◽  
Vol 2 (1) ◽  
pp. e1122699 ◽  
Author(s):  
Joshua Shing Shun Li ◽  
Grace Ji-eun Shin ◽  
S Sean Millard

2019 ◽  
Vol 13 ◽  
Author(s):  
Corinna Höfling ◽  
Emira Shehabi ◽  
Peer-Hendrik Kuhn ◽  
Stefan F. Lichtenthaler ◽  
Maike Hartlage-Rübsamen ◽  
...  

1996 ◽  
Vol 180 (4) ◽  
pp. 441-449 ◽  
Author(s):  
EMMA ARAGONA ◽  
ROBERT D. BURK ◽  
MICHAEL OTT ◽  
DAVID A. SHAFRITZ ◽  
SANJEEV GUPTA

Immunity ◽  
2019 ◽  
Vol 50 (2) ◽  
pp. 317-333.e6 ◽  
Author(s):  
Xiaoyu Liu ◽  
Daniel P. Nemeth ◽  
Daniel B. McKim ◽  
Ling Zhu ◽  
Damon J. DiSabato ◽  
...  

2021 ◽  
Author(s):  
Sruti Rayaprolu ◽  
Sara Bitarafan ◽  
Ranjita Betarbet ◽  
Sydney N Sunna ◽  
Lihong Cheng ◽  
...  

Isolation and proteomic profiling of brain cell types, particularly neurons, pose several technical challenges which limit our ability to resolve distinct cellular phenotypes in neurological diseases. Therefore, we generated a novel mouse line that enables cell type-specific expression of a biotin ligase, TurboID, via Cre-lox strategy for in vivo proximity-dependent biotinylation of proteins. Using adenoviral-based and transgenic approaches, we show striking protein biotinylation in neuronal cell bodies and axons throughout the mouse brain. We quantified more than 2,000 neuron-derived proteins following enrichment that mapped to numerous subcellular compartments. Synaptic, transmembrane transporters, ion channel subunits, and disease-relevant druggable targets were among the most significantly enriched proteins. Remarkably, we resolved brain region-specific proteomic profiles of Camk2a neurons with distinct functional molecular signatures and disease associations that may underlie regional neuronal vulnerability. Leveraging the neuronal specificity of this in vivo biotinylation strategy, we used an antibody-based approach to uncover regionally unique patterns of neuron-derived signaling phospho-proteins and cytokines, particularly in the cortex and cerebellum. Our work provides a proteomic framework to investigate cell type-specific mechanisms driving physiological and pathological states of the brain as well as complex tissues beyond the brain.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Isabel Mendizabal ◽  
Stefano Berto ◽  
Noriyoshi Usui ◽  
Kazuya Toriumi ◽  
Paramita Chatterjee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document