Dorsolateral Funiculus Lesioning of the Mouse Cervical Spinal Cord at C4 but Not at C6 Results in Sustained Forelimb Motor Deficits

2013 ◽  
Vol 30 (12) ◽  
pp. 1070-1083 ◽  
Author(s):  
Brett J. Hilton ◽  
Peggy Assinck ◽  
Greg J. Duncan ◽  
Daniel Lu ◽  
Stephanie Lo ◽  
...  
2019 ◽  
Vol 9 (4) ◽  
pp. 78 ◽  
Author(s):  
Paolo Mazzone ◽  
Fabio Viselli ◽  
Stefano Ferraina ◽  
Margherita Giamundo ◽  
Massimo Marano ◽  
...  

Background: The present study investigated the effectiveness of stimulation applied at cervical levels on pain and Parkinson’s disease (PD) symptoms using either tonic or burst stimulation mode. Methods: Tonic high cervical spinal cord stimulation (T-HCSCS) was applied on six PD patients suffering from low back pain and failed back surgery syndrome, while burst HCSCS (B-HCSCS) was applied in twelve PD patients to treat primarily motor deficits. Stimulation was applied percutaneously with quadripolar or octapolar electrodes. Clinical evaluation was assessed by the Unified Parkinson’s Disease Rating Scale (UPDRS) and the Hoehn and Yahr (H&Y) scale. Pain was evaluated by a visual analog scale. Evaluations of gait and of performance in a cognitive motor task were performed in some patients subjected to B-HCSCS. One patient who also suffered from severe autonomic cardiovascular dysfunction was investigated to evaluate the effectiveness of B-HCSCS on autonomic functions. Results: B-HCSCS was more effective and had more consistent effects than T-HCSCS in reducing pain. In addition, B-HCSCS improved UPDRS scores, including motor sub-items and tremor and H&Y score. Motor benefits appeared quickly after the beginning of B-HCSCS, in contrast to long latency improvements induced by T-HCSCS. A slight decrease of effectiveness was observed 12 months after implantation. B-HCSCS also improved gait and ability of patients to correctly perform a cognitive–motor task requiring inhibition of a prepared movement. Finally, B-HCSCS ameliorated autonomic control in the investigated patient. Conclusions: The results support a better usefulness of B-HCSCS compared to T-HCSCS in controlling pain and specific aspects of PD motor and non-motor deficits for at least one year.


2018 ◽  
Vol 16 (1) ◽  
pp. E7-E7
Author(s):  
Alejandro Enriquez-Marulanda ◽  
Abdulrahman Y Alturki ◽  
Kimberly Kicielinski ◽  
Ajith J Thomas ◽  
Christopher S Ogilvy

Abstract We describe the case of a previously healthy 44-yr-old female patient presenting with a sudden onset of numbness, paresthesias, and decreased sensation in her lower limbs. Physical examination revealed a decreased sensation to vibration and light touch in her lower extremities, primarily in the left limb. Impaired proprioception was also evident primarily in the left toe. Full strength with 2+ reflexes was observed in all extremities. Magnetic resonance imaging demonstrated an exophytic lesion in the posterior aspect of the cervical spinal cord at the C5-C6 level, with a hemosiderin halo, consistent with a cavernous malformation. Given the evidence of past hemorrhage and the location of the lesion, microsurgical intervention was indicated. A midline cervical C5-C6 laminectomy under neurophysiologic monitoring was performed, and complete resection of the lesion was achieved with mild improvement of the sensitive symptoms and no evidence of new motor deficits. Any microsurgical resection of a cervical spinal cord lesion can be technically difficult and adequate patient selection with evaluation of the accessibility to the lesion is key.1 Surgical resection of cavernous malformations in selected patients eliminates the risk of future hemorrhage and may achieve satisfactory outcomes comparable to patients who undergo conservative management.2 In the following video illustration, we narrate this operative case, and highlight the nuances of this approach. Patient consent was obtained for the submission of the video to this journal.


Author(s):  
L. Vacca-Galloway ◽  
Y.Q. Zhang ◽  
P. Bose ◽  
S.H. Zhang

The Wobbler mouse (wr) has been studied as a model for inherited human motoneuron diseases (MNDs). Using behavioral tests for forelimb power, walking, climbing, and the “clasp-like reflex” response, the progress of the MND can be categorized into early (Stage 1, age 21 days) and late (Stage 4, age 3 months) stages. Age-and sex-matched normal phenotype littermates (NFR/wr) were used as controls (Stage 0), as well as mice from two related wild-type mouse strains: NFR/N and a C57BI/6N. Using behavioral tests, we also detected pre-symptomatic Wobblers at postnatal ages 7 and 14 days. The mice were anesthetized and perfusion-fixed for immunocytochemical (ICC) of CGRP and ChAT in the spinal cord (C3 to C5).Using computerized morphomety (Vidas, Zeiss), the numbers of IR-CGRP labelled motoneurons were significantly lower in 14 day old Wobbler specimens compared with the controls (Fig. 1). The same trend was observed at 21 days (Stage 1) and 3 months (Stage 4). The IR-CGRP-containing motoneurons in the Wobbler specimens declined progressively with age.


1992 ◽  
Vol 158 (6) ◽  
pp. 1413-1413
Author(s):  
T E Barros ◽  
R P Oliveira ◽  
L A Rosemberg ◽  
A C Magalhães

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Michael D. Sunshine ◽  
Antonino M. Cassarà ◽  
Esra Neufeld ◽  
Nir Grossman ◽  
Thomas H. Mareci ◽  
...  

AbstractRespiratory insufficiency is a leading cause of death due to drug overdose or neuromuscular disease. We hypothesized that a stimulation paradigm using temporal interference (TI) could restore breathing in such conditions. Following opioid overdose in rats, two high frequency (5000 Hz and 5001 Hz), low amplitude waveforms delivered via intramuscular wires in the neck immediately activated the diaphragm and restored ventilation in phase with waveform offset (1 Hz or 60 breaths/min). Following cervical spinal cord injury (SCI), TI stimulation via dorsally placed epidural electrodes uni- or bilaterally activated the diaphragm depending on current and electrode position. In silico modeling indicated that an interferential signal in the ventral spinal cord predicted the evoked response (left versus right diaphragm) and current-ratio-based steering. We conclude that TI stimulation can activate spinal motor neurons after SCI and prevent fatal apnea during drug overdose by restoring ventilation with minimally invasive electrodes.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1057
Author(s):  
Riccardo Bravi ◽  
Stefano Caputo ◽  
Sara Jayousi ◽  
Alessio Martinelli ◽  
Lorenzo Biotti ◽  
...  

Residual motion of upper limbs in individuals who experienced cervical spinal cord injury (CSCI) is vital to achieve functional independence. Several interventions were developed to restore shoulder range of motion (ROM) in CSCI patients. However, shoulder ROM assessment in clinical practice is commonly limited to use of a simple goniometer. Conventional goniometric measurements are operator-dependent and require significant time and effort. Therefore, innovative technology for supporting medical personnel in objectively and reliably measuring the efficacy of treatments for shoulder ROM in CSCI patients would be extremely desirable. This study evaluated the validity of a customized wireless wearable sensors (Inertial Measurement Units—IMUs) system for shoulder ROM assessment in CSCI patients in clinical setting. Eight CSCI patients and eight healthy controls performed four shoulder movements (forward flexion, abduction, and internal and external rotation) with dominant arm. Every movement was evaluated with a goniometer by different testers and with the IMU system at the same time. Validity was evaluated by comparing IMUs and goniometer measurements using Intraclass Correlation Coefficient (ICC) and Limits of Agreement (LOA). inter-tester reliability of IMUs and goniometer measurements was also investigated. Preliminary results provide essential information on the accuracy of the proposed wireless wearable sensors system in acquiring objective measurements of the shoulder movements in CSCI patients.


Sign in / Sign up

Export Citation Format

Share Document