Spinal dopaminergic mechanisms regulating the micturition reflex in male rats with complete spinal cord injury

2020 ◽  
Author(s):  
Yuan Qiao ◽  
Zachary Brodnik ◽  
Shunyi Zhao ◽  
Cameron T Trueblood ◽  
Zhenzhong Li ◽  
...  
2014 ◽  
Vol 21 (3) ◽  
pp. 454-457 ◽  
Author(s):  
Timothy J. Kovanda ◽  
Eric M. Horn

Secondary injury following initial spinal cord trauma is uncommon and frequently attributed to mismanagement of an unprotected cord in the acute time period after injury. Subacute posttraumatic ascending myelopathy (SPAM) is a rare occurrence in the days to weeks following an initial spinal cord injury that is unrelated to manipulation of an unprotected cord and involves 4 or more vertebral levels above the original injury. The authors present a case of SPAM occurring in a 15-year-old boy who sustained a T3–4 fracture-dislocation resulting in a complete spinal cord injury, and they highlight the imaging findings and optimum treatment for this rare event.


2021 ◽  
Vol 15 ◽  
Author(s):  
Xuankang Wang ◽  
Zhihao Zhang ◽  
Zhijie Zhu ◽  
Zhuowen Liang ◽  
Xiaoshuang Zuo ◽  
...  

After spinal cord injury (SCI), reactive astrocytes can be classified into two distinctive phenotypes according to their different functions: neurotoxic (A1) astrocytes and neuroprotective (A2) astrocytes. Our previous studies proved that photobiomodulation (PBM) can promote motor function recovery and improve tissue repair after SCI, but little is known about the underlying mechanism. Therefore, we aimed to investigate whether PBM contributes to repair after SCI by regulating the activation of astrocytes. Male rats subjected to clip-compression SCI were treated with PBM for two consecutive weeks, and the results showed that recovery of motor function was improved, the lesion cavity size was reduced, and the number of neurons retained was increased. We determined the time course of A1/A2 astrocyte activation after SCI by RNA sequencing (RNA-Seq) and verified that PBM inhibited A1 astrocyte activation and promoted A2 astrocyte activation at 7 days postinjury (dpi) and 14 dpi. Subsequently, potential signaling pathways related to A1/A2 astrocyte activation were identified by GO function analysis and KEGG pathway analysis and then studied in animal experiments and preliminarily analyzed in cultured astrocytes. Next, we observed that the expression of basic fibroblast growth factor (bFGF) and transforming growth factor-β (TGF-β) was upregulated by PBM and that both factors contributed to the transformation of A1/A2 astrocytes in a dose-dependent manner. Finally, we found that PBM reduced the neurotoxicity of A1 astrocytes to dorsal root ganglion (DRG) neurons. In conclusion, PBM can promote better recovery after SCI, which may be related to the transformation of A1/A2 reactive astrocytes.


2019 ◽  
Vol 6 (3) ◽  
pp. 83-91
Author(s):  
Mohaddeseh Hedayatzadeh ◽  
Hamid Reza Kobravi ◽  
Maryam Tehranipour

Background: Spinal cord injury is one of the diseases that, no specific treatment has yet found despite the variety of works that have done in this field. Different approaches to treat such injuries have investigated today. One of them is invasive intra-spinal interventions such as electrical stimulation. Therefore, in this study, the effect of the protocol for intra-spinal variable and fixed electrical stimulation has been investigated in order to recover from spinal cord injury. Methods: In the study, 18 Wistar male rats randomly divided into Three groups, including intraspinal electrical stimulation (IES), IES with variable pattern of stimulation (VP IES) and a sham group. Animals initially subjected to induced spinal cord injury. After one week, the animal movement was recorded on the treadmill during practice using a camera and angles of the ankle joint were measured using the Tracker software. Then, the obtained data were analyzed by nonlinear evaluations in the phase space. Results: The motion analyses and kinematic analyses were carried out on all groups. According to the achieved results, the gait dynamics of the VP IES group has the most conformity to the gait dynamics of the healthy group. Also, the best quality of the balance preservation observed in the VP IES group. Conclusion: It can be concluded that the IES with variable pattern of stimulation along with exercise therapy has significant gait restorative effects and increases the range of motion in rats with induced spinal cord injury.


Sign in / Sign up

Export Citation Format

Share Document