Advanced Atherosclerotic Foam Cell Formation Has Features of an Acquired Lysosomal Storage Disorder

2006 ◽  
Vol 9 (2) ◽  
pp. 245-255 ◽  
Author(s):  
W. Gray Jerome
2021 ◽  
Vol 22 (21) ◽  
pp. 11488
Author(s):  
Michael Torzewski

Atherosclerosis research typically focuses on the evolution of intermediate or advanced atherosclerotic lesions rather than on prelesional stages of atherogenesis. Yet these early events may provide decisive leads on the triggers of the pathologic process, before lesions become clinically overt. Thereby, it is mandatory to consider extracellular lipoprotein deposition at this stage as the prerequisite of foam cell formation leading to a remarkable accumulation of LDL (Low Density Lipoproteins). As progression of atherosclerosis displays the characteristic features of a chronic inflammatory process on the one hand and native LDL lacks inflammatory properties on the other hand, the lipoprotein must undergo biochemical modification to become atherogenic. During the last 25 years, evidence was accumulated in support of a different concept on atherogenesis proposing that modification of native LDL occurs through the action of ubiquitous hydrolytic enzymes (enzymatically modified LDL or eLDL) rather than oxidation and contending that the physiological events leading to macrophage uptake and reverse transport of eLDL first occur without inflammation (initiation with reversion). Preventing or reversing initial atherosclerotic lesions would avoid the later stages and therefore prevent clinical manifestations. This concept is in accordance with the response to retention hypothesis directly supporting the strategy of lowering plasma levels of atherogenic lipoproteins as the most successful therapy for atherosclerosis and its sequelae. Apart from but unquestionable closely related to this concept, there are several other hypotheses on atherosclerotic lesion initiation favoring an initiating role of the immune system (‘vascular-associated lymphoid tissue’ (VALT)), defining foam cell formation as a variant of lysosomal storage disease, relating to the concept of the inflammasome with crystalline cholesterol and/or mitochondrial DAMPs (damage-associated molecular patterns) being mandatory in driving arterial inflammation and, last but not least, pointing to miRNAs (micro RNAs) as pivotal players. However, direct anti-inflammatory therapies may prove successful as adjuvant components but will likely never be used in the absence of strategies to lower plasma levels of atherogenic lipoproteins, the key point of the perception that atherosclerosis is not simply an inevitable result of senescence. In particular, given the importance of chemical modifications for lipoprotein atherogenicity, regulation of the enzymes involved might be a tempting target for pharmacological research.


Author(s):  
K. Florian Klemp ◽  
J.R. Guyton

The earliest distinctive lesions in human atherosclerosis are fatty streaks (FS), characterized initially by lipid-laden foam cell formation. Fibrous plaques (FP), the clinically significant lesions, differ from FS in several respects. In addition to foam cells, the FP also exhibit fibromuscular proliferation and a necrotic core region rich in extracellular lipid. The possible transition of FS into mature FP has long been debated, however. A subset of FS described by Katz etal., was intermediate in lipid composition between ordinary FS and FP. We investigated this hypothesis by electron microscopic cytochemistry by employing a tissue processing technique previously described by our laboratory. Osmium-tannic acid-paraphenylenediamine (OTAP) tissue preparation enabled ultrastructural analysis of lipid deposits to discern features characteristic of mature fibrous plaques.


Planta Medica ◽  
2007 ◽  
Vol 73 (09) ◽  
Author(s):  
N Ide ◽  
N Morihara ◽  
L Paptheodorou ◽  
R Stirner ◽  
N Weiss

Author(s):  
Parimalanandhini Duraisamy ◽  
Sangeetha Ravi ◽  
Mahalakshmi Krishnan ◽  
Catherene M. Livya ◽  
Beulaja Manikandan ◽  
...  

: Atherosclerosis, a major contributor to cardiovascular disease is a global alarm causing mortality worldwide. Being a progressive disease in the arteries, it mainly causes recruitment of monocytes to the inflammatory sites and subside pathological conditions. Monocyte-derived macrophage mainly acts in foam cell formation by engorging the LDL molecules, oxidizes it into Ox-LDL and leads to plaque deposit development. Macrophages in general differentiate, proliferate and undergo apoptosis at the inflammatory site. Frequently two subtypes of macrophages M1 and M2 has to act crucially in balancing the micro-environmental conditions of endothelial cells in arteries. The productions of proinflammatory mediators like IL-1, IL-6, TNF-α by M1 macrophage has atherogenic properties majorly produced during the early progression of atherosclerotic plaques. To counteract cytokine productions and M1-M2 balance, secondary metabolites (phytochemicals) from plants act as a therapeutic agent in alleviating atherosclerosis progression. This review summarizes the fundamental role of the macrophage in atherosclerotic lesion formation along with its plasticity characteristic as well as recent therapeutic strategies using herbal components and anti-inflammatory cytokines as potential immunomodulators.


Author(s):  
Dun Niu ◽  
Lanfang Li ◽  
Zhizhong Xie

Chloride channel 3 (ClC-3), a Cl−/H+ antiporter, has been well established as a member of volume-regulated chloride channels (VRCCs). ClC-3 may be a crucial mediator for activating inflammation-associated signaling pathways by regulating protein phosphorylation. A growing number of studies have indicated that ClC-3 overexpression plays a crucial role in mediating increased plasma low-density lipoprotein levels, vascular endothelium dysfunction, pro-inflammatory activation of macrophages, hyper-proliferation and hyper-migration of vascular smooth muscle cells (VSMCs), as well as oxidative stress and foam cell formation, which are the main factors responsible for atherosclerotic plaque formation in the arterial wall. In the present review, we summarize the molecular structures and classical functions of ClC-3. We further discuss its emerging role in the atherosclerotic process. In conclusion, we explore the potential role of ClC-3 as a therapeutic target for atherosclerosis.


2021 ◽  
Vol 14 (6) ◽  
pp. 567
Author(s):  
Su Wutyi Thant ◽  
Noppawan Phumala Morales ◽  
Visarut Buranasudja ◽  
Boonchoo Sritularak ◽  
Rataya Luechapudiporn

Oxidation of low-density lipoprotein (LDL) plays a crucial role in the pathogenesis of atherosclerosis. Hemin (iron (III)-protoporphyrin IX) is a degradation product of hemoglobin that can be found in thalassemia patients. Hemin is a strong oxidant that can cause LDL oxidation and contributes to atherosclerosis in thalassemia patients. Lusianthridin from Dendrobium venustrum is a phenolic compound that possesses antioxidant activity. Hence, lusianthridin could be a promising compound to be used against hemin-induced oxidative stress. The major goal of this study is to evaluate the protective effect of lusianthridin on hemin-induced low-density lipoprotein oxidation (he-oxLDL). Here, various concentrations of lusianthridin (0.25, 0.5, 1, and 2 µM) were preincubated with LDL for 30 min, then 5 µM of hemin was added to initiate the oxidation, and oxidative parameters were measured at various times of incubation (0, 1, 3, 6, 12, 24 h). Lipid peroxidation of LDL was measured by thiobarbituric reactive substance (TBARs) assay and relative electrophoretic mobility (REM). The lipid composition of LDL was analyzed by using reverse-phase HPLC. Foam cell formation with he-oxLDL in RAW 264.7 macrophage cells was detected by Oil Red O staining. The results indicated that lusianthridin could inhibit TBARs formation, decrease REM, decrease oxidized lipid products, as well as preserve the level of cholesteryl arachidonate and cholesteryl linoleate. Moreover, He-oxLDL incubated with lusianthridin for 24 h can reduce the foam cell formation in RAW 264.7 macrophage cells. Taken together, lusianthridin could be a potential agent to be used to prevent atherosclerosis in thalassemia patients.


2021 ◽  
pp. 174181
Author(s):  
Jianzhen Lei ◽  
Jingheng Ye ◽  
Rong She ◽  
Ruyi Zhang ◽  
Yanan Wang ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 832
Author(s):  
Michishige Terasaki ◽  
Hironori Yashima ◽  
Yusaku Mori ◽  
Tomomi Saito ◽  
Yoshie Shiraga ◽  
...  

Glucose-dependent insulinotropic polypeptide (GIP) has been reported to have an atheroprotective property in animal models. However, the effect of GIP on macrophage foam cell formation, a crucial step of atherosclerosis, remains largely unknown. We investigated the effects of GIP on foam cell formation of, and CD36 expression in, macrophages extracted from GIP receptor-deficient (Gipr−/−) and Gipr+/+ mice and cultured human U937 macrophages by using an agonist for GIP receptor, [D-Ala2]GIP(1–42). Foam cell formation evaluated by esterification of free cholesterol to cholesteryl ester and CD36 gene expression in macrophages isolated from Gipr+/+ mice infused subcutaneously with [D-Ala2]GIP(1–42) were significantly suppressed compared with vehicle-treated mice, while these beneficial effects were not observed in macrophages isolated from Gipr−/− mice infused with [D-Ala2]GIP(1–42). When macrophages were isolated from Gipr+/+ and Gipr−/− mice, and then exposed to [D-Ala2]GIP(1–42), similar results were obtained. [D-Ala2]GIP(1–42) attenuated ox-LDL uptake of, and CD36 gene expression in, human U937 macrophages as well. Gene expression level of cyclin-dependent kinase 5 (Cdk5) was also suppressed by [D-Ala2]GIP(1–42) in U937 cells, which was corelated with that of CD36. A selective inhibitor of Cdk5, (R)-DRF053 mimicked the effects of [D-Ala2]GIP(1–42) in U937 cells. The present study suggests that GIP could inhibit foam cell formation of macrophages by suppressing the Cdk5-CD36 pathway via GIP receptor.


Sign in / Sign up

Export Citation Format

Share Document