Differentiation Potential and Profile of Nuclear Receptor Expression During Expanded Culture of Human Adipose Tissue-Derived Stem Cells Reveals PPARγ as an Important Regulator of Oct4 Expression

2014 ◽  
Vol 23 (1) ◽  
pp. 24-33 ◽  
Author(s):  
Lan T.M. Dao ◽  
Eun-Young Park ◽  
Ok-Kyung Hwang ◽  
Ji-Young Cha ◽  
Hee-Sook Jun
2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Ana Carolina Irioda ◽  
Rafael Cassilha ◽  
Larissa Zocche ◽  
Julio Cesar Francisco ◽  
Ricardo Correa Cunha ◽  
...  

Aim. The effects of cryopreservation on adipose tissue-derived mesenchymal stem cells are not clearly documented, as there is a growing body of evidence about the importance of adipose-derived mesenchymal stem cells for regenerative therapies. The aim of this study was to analyze human adipose tissue-derived mesenchymal stem cells phenotypic expression (CD34, CD45, CD73, CD90, CD105, and CD49d), colony forming unit ability, viability, and differentiation potential before and after cryopreservation.Materials and Methods. 12 samples of the adipose tissue were collected from a healthy donor using the liposuction technique. The cell isolation was performed by enzymatic digestion and then the cells were cultured up to passage 2. Before and after cryopreservation the immunophenotype, cellular viability analysis by flow cytometer, colony forming units ability, differentiation potential into adipocytes and osteoblasts as demonstrated by Oil Red O and Alizarin Red staining, respectively.Results. The immunophenotypic markers expression was largely preserved, and their multipotency was maintained. However, after cryopreservation, the cells decreasedα4-integrin expression (CD49d), cell viability, and number of colony forming units.Conclusions. These findings suggest that ADMSC transplanted after cryopreservation might compromise the retention of transplanted cells in the host tissue. Therefore, further studies are warranted to standardize protocols related to cryopreservation to attain full benefits of stem cell therapy.


Author(s):  
Angelo Cignarelli ◽  
Sebastio Perrini ◽  
Romina Ficarella ◽  
Alessandro Peschechera ◽  
Pasquale Nigro ◽  
...  

Stem cells are unique cells exhibiting self-renewing properties and the potential to differentiate into multiple specialised cell types. Totipotent or pluripotent stem cells are generally abundant in embryonic or fetal tissues, but the use of discarded embryos as sources of these cells raises challenging ethical problems. Adult stem cells can also differentiate into a wide variety of cell types. In particular, adult adipose tissue contains a pool of abundant and accessible multipotent stem cells, designated as adipose-derived stem cells (ASCs), that are able to replicate as undifferentiated cells, to develop as mature adipocytes and to differentiate into multiple other cell types along the mesenchymal lineage, including chondrocytes, myocytes and osteocytes, and also into cells of endodermal and neuroectodermal origin, including beta-cells and neurons, respectively. An impairment in the differentiation potential and biological functions of ASCs may contribute to the development of obesity and related comorbidities. In this review, we summarise different aspects of the ASCs with special reference to the isolation and characterisation of these cell populations, their relation to the biochemical features of the adipose tissue depot of origin and to the metabolic characteristics of the donor subject and discuss some prospective therapeutic applications.


2019 ◽  
Vol 6 (4) ◽  
pp. 3131-3140 ◽  
Author(s):  
Liem Hieu Pham ◽  
Ngoc Bich Vu ◽  
Phuc Van Pham

Introduction: Human mesenchymal stem cells (MSCs) are the most popular stem cells applied in disease treatment. MSCs can be isolated and in vitro expanded from various sources such as bone marrow, peripheral blood, umbilical cord blood, umbilical cord tissue, and adipose tissue. According to Dominici et al. (2006), MSCs should express CD105, an essential marker used to confirm MSCs. However, some recent studies have show that MSCs contained a subpopulation that is negative for CD105. This study aimed to compare the immune modulation capacity of 2 populations of CD105 positive (CD105+) and negative (CD105-) MSCs derived from 2 sources: human adipose tissue (AT) and human umbilical cord (UC). Methods: MSCs were isolated from human adipose tissues (adipose tissue-derived mesenchymal stem cells – AT-MSCs) and human umbilical cord (umbilical cord-derived mesenchymal stem cells – UC-MSCs) according to previously published protocols. The two populations of CD105- and CD105+ MSCs were sorted based on the expression of CD105 from AT-MSCs and UC-MSCs. Four populations of CD105 (AT-MSCs, CD105+ AT-MSCs, CD105- UC-MSCs, and CD105+ UC-MSCs) were used to compare the phenotype as well as in vitro differentiation potential; then they were used to evaluate the immune modulation capacity by allogeneic T cell suppression and cytokine release. Results: The results showed that CD105- MSCs from AT and UC exhibited an immune modulation capacity that was much stronger than CD105+ MSCs from the same source of AT and UC. The strong immunomodulation of CD105- MSCs may relate to autocrine production of TGF-beta 1 by MSCs. Conclusion: The results suggested that CD105- MSCs are promising MSCs for application in regenerative medicine, especially for the treatment of diseases related to inflammation.  


2015 ◽  
Vol 64 (9) ◽  
pp. 697-706 ◽  
Author(s):  
Michael J. Hansen ◽  
N. Achini Bandara ◽  
Philip S. Low

Gut ◽  
2008 ◽  
Vol 58 (4) ◽  
pp. 570-581 ◽  
Author(s):  
H Aurich ◽  
M Sgodda ◽  
P Kaltwasser ◽  
M Vetter ◽  
A Weise ◽  
...  

2011 ◽  
Vol 6 (8) ◽  
pp. 772-788 ◽  
Author(s):  
P. Hepsibha ◽  
T.V. Meenambiga ◽  
A. Mangalagow ◽  
A. Palanisamy ◽  
A. Stalin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document