Comparative Analysis of Human Adipose-derived Stromal/Stem Cells and Dermal Fibroblasts

Author(s):  
Fabiana Zanata ◽  
Lowry Curley ◽  
Elizabeth Martin ◽  
Annie C Bowles ◽  
Bruce A Bunnell ◽  
...  
Author(s):  
Mariane Izabella Melo ◽  
Pricila Cunha ◽  
Marcelo de Miranda ◽  
Camila Cristina Fraga Faraco ◽  
Joana Lobato Barbosa ◽  
...  

2014 ◽  
Vol 23 (22) ◽  
pp. 2791-2802 ◽  
Author(s):  
Jaiesa Zych ◽  
Lucia Spangenberg ◽  
Marco A. Stimamiglio ◽  
Ana Paula R. Abud ◽  
Patrícia Shigunov ◽  
...  

Cell Medicine ◽  
2012 ◽  
Author(s):  
Danielle D. Carrade ◽  
Michael W. Lame ◽  
Michael S. Kent ◽  
Kaitlin C. Clark ◽  
Naomi J. Walker ◽  
...  

Author(s):  
Basem M. Abdallah ◽  
Hany M. Khattab

: The isolation and culture of murine bone marrow-derived mesenchymal stromal stem cells (mBMSCs) have attracted great interest in terms of the pre-clinical applications of stem cells in tissue engineering and regenerative medicine. In addition, culturing mBMSCs is important for studying the molecular mechanisms of bone remodelling using relevant transgenic mice. Several factors have created challenges in the isolation and high-yield expansion of homogenous mBMSCs; these factors include low frequencies of bone marrow-derived mesenchymal stromal stem cells (BMSCs) in bone marrow, variation among inbred mouse strains, contamination with haematopoietic progenitor cells (HPCs), the replicative senescence phenotype and cellular heterogeneity. In this review, we provide an overview of nearly all protocols used for isolating and culturing mBMSCs with the aim of clarifying the most important guidelines for culturing highly purified mBMSC populations retaining in vitro and in vivo differentiation potential.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gertraud Eylert ◽  
Reinhard Dolp ◽  
Alexandra Parousis ◽  
Richard Cheng ◽  
Christopher Auger ◽  
...  

Abstract Background Multipotent mesenchymal stromal/stem cell (MSC) therapy is under investigation in promising (pre-)clinical trials for wound healing, which is crucial for survival; however, the optimal cell dosage remains unknown. The aim was to investigate the efficacy of different low-to-high MSC dosages incorporated in a biodegradable collagen-based dermal regeneration template (DRT) Integra®. Methods We conducted a porcine study (N = 8 Yorkshire pigs) and seeded between 200 and 2,000,000 cells/cm2 of umbilical cord mesenchymal stromal/stem cells on the DRT and grafted it onto full-thickness burn excised wounds. On day 28, comparisons were made between the different low-to-high cell dose groups, the acellular control, a burn wound, and healthy skin. Result We found that the low dose range between 200 and 40,000 cells/cm2 regenerates the full-thickness burn excised wounds most efficaciously, followed by the middle dose range of 200,000–400,000 cells/cm2 and a high dose of 2,000,000 cells/cm2. The low dose of 40,000 cells/cm2 accelerated reepithelialization, reduced scarring, regenerated epidermal thickness superiorly, enhanced neovascularization, reduced fibrosis, and reduced type 1 and type 2 macrophages compared to other cell dosages and the acellular control. Conclusion This regenerative cell therapy study using MSCs shows efficacy toward a low dose, which changes the paradigm that more cells lead to better wound healing outcome.


PLoS ONE ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. e0169504 ◽  
Author(s):  
Chiara E. Ghezzi ◽  
Benedetto Marelli ◽  
Fiorenzo G. Omenetto ◽  
James L. Funderburgh ◽  
David L. Kaplan

Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 750
Author(s):  
Pasquale Marrazzo ◽  
Valeria Pizzuti ◽  
Silvia Zia ◽  
Azzurra Sargenti ◽  
Daniele Gazzola ◽  
...  

Antibiotic resistance is creating enormous attention on the development of new antibiotic-free therapy strategies for bacterial diseases. Mesenchymal stromal stem cells (MSCs) are the most promising candidates in current clinical trials and included in several cell-therapy protocols. Together with the well-known immunomodulatory and regenerative potential of the MSC secretome, these cells have shown direct and indirect anti-bacterial effects. However, the low reproducibility and standardization of MSCs from different sources are the current limitations prior to the purification of cell-free secreted antimicrobial peptides and exosomes. In order to improve MSC characterization, novel label-free functional tests, evaluating the biophysical properties of the cells, will be advantageous for their cell profiling, population sorting, and quality control. We discuss the potential of emerging microfluidic technologies providing new insights into density, shape, and size of live cells, starting from heterogeneous or 3D cultured samples. The prospective application of these technologies to studying MSC populations may contribute to developing new biopharmaceutical strategies with a view to naturally overcoming bacterial defense mechanisms.


Sign in / Sign up

Export Citation Format

Share Document