polysome profiling
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 45)

H-INDEX

15
(FIVE YEARS 5)

2022 ◽  
Vol 3 (1) ◽  
pp. 101037
Author(s):  
Cai Han ◽  
Linyu Sun ◽  
Qi Pan ◽  
Yumeng Sun ◽  
Wentao Wang ◽  
...  

2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Yan Wang ◽  
Chunjie Wu ◽  
Yu Du ◽  
Zhongwei Li ◽  
Minle Li ◽  
...  

AbstractCircular RNAs (circRNAs) are classified as noncoding RNAs because they are devoid of a 5’ end cap and a 3’ end poly (A) tail necessary for cap-dependent translation. However, increasing numbers of translated circRNAs identified through high-throughput RNA sequencing overlapping with polysome profiling indicate that this rule is being broken. CircRNAs can be translated in cap-independent mechanism, including IRES (internal ribosome entry site)-initiated pattern, MIRES (m6A internal ribosome entry site) -initiated patterns, and rolling translation mechanism (RCA). CircRNA-encoded proteins harbour diverse functions similar to or different from host proteins. In addition, they are linked to the modulation of human disease including carcinomas and noncarcinomas. CircRNA-related translatomics and proteomics have attracted increasing attention. This review discusses the progress and exclusive characteristics of circRNA translation and highlights the latest mechanisms and regulation of circRNA translatomics. Furthermore, we summarize the extensive functions and mechanisms of circRNA-derived proteins in human diseases, which contribute to a better understanding of intricate noncanonical circRNA translatomics and proteomics and their therapeutic potential in human diseases.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 562-562
Author(s):  
Jarod Rollins

Abstract Forms of dietary restriction like intermittent fasting (IF) and caloric restriction (CR) promote health and longevity through changes in gene expression. While the transcriptional changes that occur in response to DR have been well described across several species, the role of translational regulation has lagged. Using polysome profiling and mRNA-seq, we quantified changes in actively translated mRNAs that occur in C. elegans under CR compared to well-fed conditions. The analysis revealed hundreds of transcripts regulated on the translational level that would have been missed using conventual transcriptomics. Among the translationally down-regulated genes that where pro-longevity when knocked down were regulators of the cell-cycle: fbxb-24, sdz-33, kbp-1, and cdk-2. In search of the mechanisms regulating selective translation under CR we investigated a role for ribosomal protein 6 (RPS-6) as its phosphorylation status is thought to regulate cell cycle and selective translation of mRNA transcripts. Using RPS-6 phospho-null and phospho-mimetic mutants, we show that phosphorylation and de-phosphorylation of RPS-6 is necessary for the pro-longevity effects of CR and IF. Furthermore, we show that IF is more beneficial for retaining locomotion with age than CR and that endogenously tagged RPS-6 ::mCherry accumulates in body wall muscle under fasting. However, the benefit of IF on locomotion is lost in RPS-6 phospho-mimetic mutants. Together, results suggest that protein translation is enhanced in the muscle under IF to prevent sarcopenia in a way dependent on RPS-6. Translatome analysis of the phospho-mutant suggested a role for RPS-6 in selective translation of p38 mitogen-activated protein kinases.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Wei-Ting Chen ◽  
Huan-Yi Tseng ◽  
Chung-Lin Jiang ◽  
Chih-Ying Lee ◽  
Peter Chi ◽  
...  

Abstract Background RAD51-dependent homologous recombination (HR) is one of the most important pathways for repairing DNA double-strand breaks (DSBs), and its regulation is crucial to maintain genome integrity. Elp1 gene encodes IKAP/ELP1, a core subunit of the Elongator complex, which has been implicated in translational regulation. However, how ELP1 contributes to genome maintenance is unclear. Methods To investigate the function of Elp1, Elp1-deficient mouse embryonic fibroblasts (MEFs) were generated. Metaphase chromosome spreading, immunofluorescence, and comet assays were used to access chromosome abnormalities and DSB formation. Functional roles of Elp1 in MEFs were evaluated by cell viability, colony forming capacity, and apoptosis assays. HR-dependent DNA repair was assessed by reporter assay, immunofluorescence, and western blot. Polysome profiling was used to evaluate translational efficiency. Differentially expressed proteins and signaling pathways were identified using a label-free liquid chromatography–tandem mass spectrometry (LC–MS/MS) proteomics approach. Results Here, we report that Elp1 depletion enhanced genomic instability, manifested as chromosome breakage and genotoxic stress-induced genomic DNA fragmentation upon ionizing radiation (IR) exposure. Elp1-deficient cells were hypersensitive to DNA damage and exhibited impaired cell proliferation and defective HR repair. Moreover, Elp1 depletion reduced the formation of IR-induced RAD51 foci and decreased RAD51 protein levels. Polysome profiling analysis revealed that ELP1 regulated RAD51 expression by promoting its translation in response to DNA damage. Notably, the requirement for ELP1 in DSB repair could be partially rescued in Elp1-deficient cells by reintroducing RAD51, suggesting that Elp1-mediated HR-directed repair of DSBs is RAD51-dependent. Finally, using proteome analyses, we identified several proteins involved in cancer pathways and DNA damage responses as being differentially expressed upon Elp1 depletion. Conclusions Our study uncovered a molecular mechanism underlying Elp1-mediated regulation of HR activity and provides a novel link between translational regulation and genome stability.


2021 ◽  
Author(s):  
Luciana Cañononero ◽  
Constanza Pautasso ◽  
Fiorella Galello ◽  
Lorena Sigaut ◽  
Lia Pietrasanta ◽  
...  

In Saccharomyces cerevisiae, cAMP regulates a number of different cellular processes, such as cell growth, metabolism, stress resistance and gene transcription. The intracellular target for this second messenger in yeast cells is the cAMP-dependent protein kinase (PKA). The way in which a broad specificity protein kinase mediates one right physiological response after cAMP increase indicates that specificity is highly regulated in the cAMP / PKA system. Here we address the mechanism through which cAMP-PKA signalling mediates its response to heat shock thermotolerance in Saccharomyces cerevisiae. Yeast PKA is a tetrameric holoenzyme composed of a regulatory (Bcy1) subunit dimer and two catalytic subunits (Tpk1, Tpk2 and Tpk3). PKA subunits are differentially expressed under certain stress conditions. In the present study we show that, although the mRNA levels of TPK1 are upregulated upon heat shock at 37℃, no change is detected in Tpk1 protein levels. The half-life of TPK1 mRNA increases and this mRNA condensates in cytoplasmic foci upon thermal stress. The resistance of TPK1 mRNA foci to cycloheximide-induced disassembly, together with the polysome profiling analysis suggest that TPK1 mRNA is impaired for entry into translation. TPK1 mRNA foci and TPK1 expression were also evaluated during thermotolerance. The crosstalk of cAMP-PKA pathway and cell wall integrity (CWI) signalling was also studied. Wsc3 sensor and other components of the CWI pathway are necessary for the upregulation of TPK1 mRNA upon heat shock conditions. The assembly in cytoplasmic foci upon thermal stress shows to be dependent of Wsc3. Finally, evidence of an increase in the abundance of Tpk1 in the PKA holoenzyme in response to heat shock is presented. The results indicate the existence of a mechanism that exclusively regulates Tpk1 subunit expression, which contributes to cAMP-PKA specificity and also suggest that a recurrent stress enhanced the fitness for the coming favorable conditions.


2021 ◽  
Author(s):  
Manuel Bulfoni ◽  
Costas Bouyioukos ◽  
Albatoul Zakaria ◽  
Fabienne Nigon ◽  
Roberta Rapone ◽  
...  

ABSTRACTPancreatic beta cell response to glucose is critical for the maintenance of normoglycemia. A strong transcriptional response was classically described in rodent models but, interestingly, not in human cells. In this study, we exposed human pancreatic beta cells to an increased concentration of glucose and analysed at a global level the mRNAs steady state levels and their translationalability. Polysome profiling analysis showed an early acute increase in protein synthesis and a specific translation regulation of more than 400 mRNAs, independently of their transcriptional regulation. We clustered the co-regulated mRNAs according to their behaviour in translation in response to glucose and discovered common structural and sequence mRNA features. Among them mTOR- and eIF2-sensitive elements have a predominant role to increase mostly the translation of mRNAs encoding for proteins of the translational machinery. Furthermore, we show that mTOR and eIF2α pathways are independently regulated in response to glucose, participating to a translational reshaping to adapt beta cell metabolism. The early acute increase in the translation machinery components prepare the beta cell for further protein demand due to glucose-mediated metabolism changes.AUTHOR SUMMARYAdaptation and response to glucose of pancreatic beta cells is critical for the maintenance of normoglycemia. Its deregulation is associated to Diabetic Mellitus (DM), a significant public health concern worldwide with an increased incidence of morbidity and mortality. Despite extensive research in rodent models, gene expression regulation in response to glucose remains largely unexplored in human cells. In our work, we have tackled this question by exposing human EndoC-BH1 cells to high glucose concentration. Using polysome profiling, the gold standard technique to analyse cellular translation activity, we observed a global protein synthesis increase, independent from transcription activity. Among the specific differentially translated mRNAs, we found transcripts coding for ribosomal proteins, allowing the cell machinery to be engaged in a metabolic response to glucose. Therefore, the regulation in response to glucose occurs mainly at the translational level in human cells, and not at the transcriptional level as described in the classically used rodent models.Furthermore, by comparing the features of the differentially translated mRNAs, and classifying them according to their translational response, we show that the early response to glucose occurs through the coupling of mRNA structure and sequence features impacting translation and regulation of specific signalling pathways. Collectively, our results support a new paradigm of gene expression regulation on the translation level in human beta cells.


2021 ◽  
Vol 7 (3) ◽  
pp. 53
Author(s):  
Chun K. Kim ◽  
Megan L. Linscott ◽  
Sarah Flury ◽  
Mengjie Zhang ◽  
Mikayla L. Newby ◽  
...  

Clinical studies demonstrated that the ovarian hormone 17β-estradiol (E2) is neuroprotective within a narrow window of time following menopause, suggesting that there is a biological switch in E2 action that is temporally dependent. However, the molecular mechanisms mediating this temporal switch have not been determined. Our previous studies focused on microRNAs (miRNA) as one potential molecular mediator and showed that E2 differentially regulated a subset of mature miRNAs which was dependent on age and the length of time following E2 deprivation. Notably, E2 significantly increased both strands of the miR-9 duplex (miR-9-5p and miR-9-3p) in the hypothalamus, raising the possibility that E2 could regulate miRNA stability/degradation. We tested this hypothesis using a biochemical approach to measure miRNA decay in a hypothalamic neuronal cell line and in hypothalamic brain tissue from a rat model of surgical menopause. Notably, we found that E2 treatment stabilized both miRNAs in neuronal cells and in the rat hypothalamus. We also used polysome profiling as a proxy for miR-9-5p and miR-9-3p function and found that E2 was able to shift polysome loading of the miRNAs, which repressed the translation of a predicted miR-9-3p target. Moreover, miR-9-5p and miR-9-3p transcripts appeared to occupy different fractions of the polysome profile, indicating differential subcellular. localization. Together, these studies reveal a novel role for E2 in modulating mature miRNA behavior, independent of its effects at regulating the primary and/or precursor form of miRNAs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaona Chen ◽  
Jie Yuan ◽  
Guang Xue ◽  
Silvia Campanario ◽  
Di Wang ◽  
...  

AbstractSkeletal muscle has a remarkable ability to regenerate owing to its resident stem cells (also called satellite cells, SCs). SCs are normally quiescent; when stimulated by damage, they activate and expand to form new fibers. The mechanisms underlying SC proliferative progression remain poorly understood. Here we show that DHX36, a helicase that unwinds RNA G-quadruplex (rG4) structures, is essential for muscle regeneration by regulating SC expansion. DHX36 (initially named RHAU) is barely expressed at quiescence but is highly induced during SC activation and proliferation. Inducible deletion of Dhx36 in adult SCs causes defective proliferation and muscle regeneration after damage. System-wide mapping in proliferating SCs reveals DHX36 binding predominantly to rG4 structures at various regions of mRNAs, while integrated polysome profiling shows that DHX36 promotes mRNA translation via 5′-untranslated region (UTR) rG4 binding. Furthermore, we demonstrate that DHX36 specifically regulates the translation of Gnai2 mRNA by unwinding its 5′ UTR rG4 structures and identify GNAI2 as a downstream effector of DHX36 for SC expansion. Altogether, our findings uncover DHX36 as an indispensable post-transcriptional regulator of SC function and muscle regeneration acting through binding and unwinding rG4 structures at 5′ UTR of target mRNAs.


2021 ◽  
Author(s):  
Julia A. Vassalakis ◽  
Stenio C. Zequi ◽  
Stephania M. Bezerra ◽  
Walter H. da Costa ◽  
Ola Larsson ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Harrison Tudor Evans ◽  
Deonne Taylor ◽  
Andrew Kneynsberg ◽  
Liviu-Gabriel Bodea ◽  
Jürgen Götz

AbstractThe synthesis of new proteins is a fundamental aspect of cellular life and is required for many neurological processes, including the formation, updating and extinction of long-term memories. Protein synthesis is impaired in neurodegenerative diseases including tauopathies, in which pathology is caused by aberrant changes to the microtubule-associated protein tau. We recently showed that both global de novo protein synthesis and the synthesis of select ribosomal proteins (RPs) are decreased in mouse models of frontotemporal dementia (FTD) which express mutant forms of tau. However, a comprehensive analysis of the effect of FTD-mutant tau on ribosomes is lacking. Here we used polysome profiling, de novo protein labelling and mass spectrometry-based proteomics to examine how ribosomes are altered in models of FTD. We identified 10 RPs which were decreased in abundance in primary neurons taken from the K3 mouse model of FTD. We further demonstrate that expression of human tau (hTau) decreases both protein synthesis and biogenesis of the 60S ribosomal subunit, with these effects being exacerbated in the presence of FTD-associated tau mutations. Lastly, we demonstrate that expression of the amino-terminal projection domain of hTau is sufficient to reduce protein synthesis and ribosomal biogenesis. Together, these data reinforce a role for tau in impairing ribosomal function.


Sign in / Sign up

Export Citation Format

Share Document