A Model for Mimicking the Pharmacokinetics of Chemotherapy Drugs for Evaluation of Drug Effects in a Soft Agar Colony Formation Assay System

1991 ◽  
Vol 7 (4) ◽  
pp. 159-164 ◽  
Author(s):  
M. MALMBERG ◽  
H.K. SLOCUM ◽  
Y.M. RUSTUM
Author(s):  
Stanley Borowicz ◽  
Michelle Van Scoyk ◽  
Sreedevi Avasarala ◽  
Manoj Kumar Karuppusamy Rathinam ◽  
Jordi Tauler ◽  
...  

2013 ◽  
Vol 18 (10) ◽  
pp. 1298-1308 ◽  
Author(s):  
Shane R. Horman ◽  
Jeremy To ◽  
Anthony P. Orth

There has been increasing interest in the development of cellular behavior models that take advantage of three-dimensional (3D) cell culture. To enable assessment of differential perturbagen impacts on cell growth in 2D and 3D, we have miniaturized and adapted for high-throughput screening (HTS) the soft agar colony formation assay, employing a laser-scanning cytometer to image and quantify multiple cell types simultaneously. The assay is HTS compatible, providing high-quality, image-based, replicable data for multiple, co-cultured cell types. As proof of concept, we subjected colorectal carcinoma colonies in 3D soft agar to a mini screen of 1528 natural product compounds. Hit compounds from the primary screen were rescreened in an HTS 3D co-culture matrix containing colon stromal cells and cancer cells. By combining tumor cells and normal, nontransformed colon epithelial cells in one primary screening assay, we were able to obtain differential IC50 data, thereby distinguishing tumor-specific compounds from general cytotoxic compounds. Moreover, we were able to identify compounds that antagonized tumor colony formation in 3D only, highlighting the importance of this assay in identifying agents that interfere with 3D tumor structural growth. This screening platform provides a fast, simple, and robust method for identification of tumor-specific agents in a biologically relevant microenvironment.


BIO-PROTOCOL ◽  
2017 ◽  
Vol 7 (12) ◽  
Author(s):  
Feng Du ◽  
Xiaodi Zhao ◽  
Daiming Fan

2018 ◽  
Vol 96 (5) ◽  
pp. 663-671 ◽  
Author(s):  
Teng Lv ◽  
Kejuan Song ◽  
Lili Zhang ◽  
Weihua Li ◽  
Yulong Chen ◽  
...  

This study aimed to explore the roles of miRNA-34a (miR-34a) in ovarian cancer (OC) cells and uncover possible mechanisms. The proliferation of OC cells was measured with an MTT assay and soft agar colony formation assay. TargetScan analysis, real-time PCR, and a luciferase reporter assay were used to demonstrate the downstream target of miR-34a in OC cells. HDAC1 expression levels were detected by immunoblot analysis. miR-34a inhibited the proliferation of SKOV3 and OVCA433 cells and enhanced cisplatin sensitivity in cisplatin-resistant SKOV3cp cells. The results of TargetScan analysis, real-time PCR, and luciferase reporter assay confirmed that miR-34a downregulated HDAC1 expression by directly targeting the 3′-UTR of HDAC1 mRNA. The overexpression of HDAC1 decreased cisplatin sensitivity and promoted proliferation in OC cells. MTT assay and soft agar colony formation assay showed that HDAC1 overexpression blocked the suppressive effects of miR-34a on SKOV3 cell proliferation. In addition, treatment with the miR-34a mimic partially recovered the cisplatin sensitivity of SKOV3cp cells, whereas HDAC1 overexpression blocked the above phenomena caused by treatment with the miR-34a mimic. miR-34a exhibited suppressive effects on OC cells via directly binding and downregulating HDAC1 expression, which subsequently decreased the resistance to cisplatin and suppressed proliferation in OC cells.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jie Zhou ◽  
Cheng Guo ◽  
Hao Wu ◽  
Bing Li ◽  
Li-Li Zhou ◽  
...  

Abstract Background Despite of the frequently reported Dnmt3a abormality in classical myeloproliferative neoplasms (cMPNs) patients, few research explores how the Dnmt3a is regulated by Jak2V617F mutation. In this study, we have investigated how the Dnmt3a is regulated by Jak2V617F mutation and its effects on downstream signaling pathways in cMPNs. Methods Specimens of Jak2V617F positive cMPN patients and normal controls were collected. Murine BaF3 cell line was used to construct cell models. Dual-Glo luciferase assays and chromatin immunoprecipitation (ChIP)-qPCR were performed to detect the impact of Stat5a on transcription activity of Dnmt3a. Soft agar colony formation assay and cell counting assay were performed to detect cell proliferation. BrdU staining and flow cytometry were used to investigate cell cycle distribution. Western blotting and quantitative reverse-transcription PCR (qPCR) were performed to detect the expression levels of genes. Results Firstly, the results of western blotting and qPCR revealed that compared with the control samples, Dnmt3a is downregulated in Jak2V617F positive samples. Then we explored the mechanism behind it and found that Dnmt3a is a downstream target of Stat5a, the transcription and translation of Dnmt3a is suppressed by the binding of aberrantly activated Stat5a with Dnmt3a promoter in Jak2V617F positive samples. We further revealed the region approximately 800 bp upstream of the first exon of the Dnmt3a promoter, which includes a gamma-activated sequence (GAS) motif of Stat5a, is the specific site that Stat5a binds to. Soft agar colony formation assay, cell counting assay, and BrdU staining and flow cytometry assay found that Dnmt3a in Jak2V617F-BaF3 cells significantly affected the cell proliferation capacity and cell cycle distribution by suppressing Cdkn1a via miR-17-5p/Cdkn1a axis and mediated G0/G1 arrest. Conclusions Transcription and translation of Dnmt3a is downregulated by the binding of Stat5a with Dnmt3a promoter in Jak2V617F cells. The GAS motif at promoter of Dnmt3a is the exact site where the Stat5a binds to. Dnmt3a conducted G0/G1 arrest through regulating miR-17-5p/Cdkn1a axis. The axis of Stat5a/Dnmt3a/miR-17-5p/Cdkn1a potentially provides a treatment target for cMPNs.


Sign in / Sign up

Export Citation Format

Share Document