scholarly journals Mesenchymal Stem Cell-Conditioned Medium Enhances Osteogenic and Chondrogenic Differentiation of Human Embryonic Stem Cells and Human Induced Pluripotent Stem Cells by Mesodermal Lineage Induction

2014 ◽  
Vol 20 (7-8) ◽  
pp. 1306-1313 ◽  
Author(s):  
Tae-Jin Lee ◽  
Jiho Jang ◽  
Seokyung Kang ◽  
Suk Ho Bhang ◽  
Gun-Jae Jeong ◽  
...  
2009 ◽  
Vol 1 (1) ◽  
pp. 76-82 ◽  
Author(s):  
Mark Denham ◽  
Jessie Leung ◽  
Cheryl Tay ◽  
Raymond C.B. Wong ◽  
Peter Donovan ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 5011
Author(s):  
Daehwan Kim ◽  
Sangho Roh

Stem cell research is essential not only for the research and treatment of human diseases, but also for the genetic preservation and improvement of animals. Since embryonic stem cells (ESCs) were established in mice, substantial efforts have been made to establish true ESCs in many species. Although various culture conditions were used to establish ESCs in cattle, the capturing of true bovine ESCs (bESCs) has not been achieved. In this review, the difficulty of establishing bESCs with various culture conditions is described, and the characteristics of proprietary induced pluripotent stem cells and extended pluripotent stem cells are introduced. We conclude with a suggestion of a strategy for establishing true bESCs.


Author(s):  
Anja Trillhaase ◽  
Marlon Maertens ◽  
Zouhair Aherrahrou ◽  
Jeanette Erdmann

AbstractStem cell technology has been around for almost 30 years and in that time has grown into an enormous field. The stem cell technique progressed from the first successful isolation of mammalian embryonic stem cells (ESCs) in the 1990s, to the production of human induced-pluripotent stem cells (iPSCs) in the early 2000s, to finally culminate in the differentiation of pluripotent cells into highly specialized cell types, such as neurons, endothelial cells (ECs), cardiomyocytes, fibroblasts, and lung and intestinal cells, in the last decades. In recent times, we have attained a new height in stem cell research whereby we can produce 3D organoids derived from stem cells that more accurately mimic the in vivo environment. This review summarizes the development of stem cell research in the context of vascular research ranging from differentiation techniques of ECs and smooth muscle cells (SMCs) to the generation of vascularized 3D organoids. Furthermore, the different techniques are critically reviewed, and future applications of current 3D models are reported. Graphical abstract


Author(s):  
Fariha Khaliq

Stem cell therapy is an approach to use cells that have the ability of self-renewal and to differentiate into different types of functional cells that are obtained from embryo and other postnatal sources to treat multiple disorders. These cells can be differentiated into different types of stem cells based on their specific characteristics to be totipotent, unipotent, multipotent or pluripotent. As potential therapy, pluripotent stem cells are considered to be the most interesting as they can be differentiated into different type of cells with similar characteristics as embryonic stem cells. Induced pluripotent stem cells (iPSCs) are adult cells that are reprogrammed genetically into stem cells from human fibroblasts through expressing genes and transcription factors at different time intervals. In this review, we will discuss the applications of stem cell therapy using iPSCs technology in treating neurodegenerative disorder such that Alzheimer’s disease (AD), Parkinson’s disease (PD), and Amyotrophic Lateral Sclerosis (ALS). We have also broadly highlighted the significance of pluripotent stem cells in stem cell therapy.


Sign in / Sign up

Export Citation Format

Share Document