retinal differentiation
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 8)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Antonio Jacobo Lopez ◽  
Sangbae Kim ◽  
Xinye Qian ◽  
Jeffrey Rogers ◽  
J. Timothy Stout ◽  
...  

Purpose: To compare the timing and efficiency of the development of non-human primate (NHP) derived retinal organoids in comparison to those derived from human embryonic stem cells. Methods: Human embryonic stem cells (hESCs) and induced-pluripotent stem cells (rhiPSCs) derived from non-human primates (Macaca mulatta) were differentiated into retinal organoids by using an established differentiation protocol. Briefly, embryoid bodies were formed from pluripotent stem cells and induced into a neural lineage with neural induction media with the addition of BMP4. Thereafter, self-formation of optic vesicles was allowed to form in a 2D culture in retinal differentiation media (RDM). Optic vesicles were then manually harvested and cultured in suspension in 3D-RDM media until analysis. Differences in the timing of differentiation and efficiency of retinal organoid development were assessed by light microscopy, electron microscopy, immunocytochemistry, and single-cell transcriptomics. Results: Generation of retinal organoids was achieved from both human and several NHP pluripotent stem cells lines. All rhiPSC lines resulted in retinal differentiation with the formation of optic vesicle-like structures similar to what has been observed in hESC retinal organoids. NHP retinal organoids had laminated structure and were composed of mature retinal cell types including cone and rod photoreceptors. Single cell RNA sequencing was conducted at two time points, which allowed identification of cell types and characterization of developmental trajectory in the developing organoid. Important differences between rhesus and human cells were measured regarding the timing and efficiency of retinal organoid differentiation. While the culture of NHP-derived iPSCs is relatively difficult compared to human stem cells, the generation of retinal organoids is feasible and may be less time consuming due to an intrinsically faster timing of retinal differentiation. Conclusions: Retinal organoids produced from iPSCs derived from Rhesus monkey using established protocols differentiate through the stages of organoid development faster than those derived from human stem cells. The production of NHP retinal organoids may be advantageous to reduce experimental time and cost for basic biology studies in retinogenesis as well as for preclinical trials in NHPs studying retinal allograft transplantation.


genesis ◽  
2020 ◽  
Vol 58 (10-11) ◽  
Author(s):  
Meghana Tare ◽  
Anuradha Venkatakrishnan Chimata ◽  
Neha Gogia ◽  
Sonia Narwal ◽  
Prajakta Deshpande ◽  
...  

2020 ◽  
Vol 14 ◽  
Author(s):  
Evgenii Kegeles ◽  
Anton Naumov ◽  
Evgeny A. Karpulevich ◽  
Pavel Volchkov ◽  
Petr Baranov

2020 ◽  
Vol 190 ◽  
pp. 107869
Author(s):  
Guadalupe Álvarez-Hernán ◽  
Ismael Hernández-Núñez ◽  
Eva María Rico-Leo ◽  
Alfonso Marzal ◽  
José Antonio de Mera-Rodríguez ◽  
...  

Zoomorphology ◽  
2019 ◽  
Vol 138 (3) ◽  
pp. 371-385 ◽  
Author(s):  
Guadalupe Álvarez-Hernán ◽  
José Pedro Andrade ◽  
Laura Escarabajal-Blázquez ◽  
Manuel Blasco ◽  
Jorge Solana-Fajardo ◽  
...  

2019 ◽  
Vol 116 (22) ◽  
pp. 10824-10833 ◽  
Author(s):  
Sangbae Kim ◽  
Albert Lowe ◽  
Rachayata Dharmat ◽  
Seunghoon Lee ◽  
Leah A. Owen ◽  
...  

Rod and cone photoreceptors are light-sensing cells in the human retina. Rods are dominant in the peripheral retina, whereas cones are enriched in the macula, which is responsible for central vision and visual acuity. Macular degenerations affect vision the most and are currently incurable. Here we report the generation, transcriptome profiling, and functional validation of cone-rich human retinal organoids differentiated from hESCs using an improved retinal differentiation system. Induced by extracellular matrix, aggregates of hESCs formed single-lumen cysts composed of epithelial cells with anterior neuroectodermal/ectodermal fates, including retinal cell fate. Then, the cysts were en bloc-passaged, attached to culture surface, and grew, forming colonies in which retinal progenitor cell patches were found. Following gentle cell detachment, retinal progenitor cells self-assembled into retinal epithelium—retinal organoid—that differentiated into stratified cone-rich retinal tissue in agitated cultures. Electron microscopy revealed differentiating outer segments of photoreceptor cells. Bulk RNA-sequencing profiling of time-course retinal organoids demonstrated that retinal differentiation in vitro recapitulated in vivo retinogenesis in temporal expression of cell differentiation markers and retinal disease genes, as well as in mRNA alternative splicing. Single-cell RNA-sequencing profiling of 8-mo retinal organoids identified cone and rod cell clusters and confirmed the cone enrichment initially revealed by quantitative microscopy. Notably, cones from retinal organoids and human macula had similar single-cell transcriptomes, and so did rods. Cones in retinal organoids exhibited electrophysiological functions. Collectively, we have established cone-rich retinal organoids and a reference of transcriptomes that are valuable resources for retinal studies.


2019 ◽  
Vol 20 (1) ◽  
pp. 178 ◽  
Author(s):  
Ta-Ching Chen ◽  
Pin-Yi She ◽  
Dong Feng Chen ◽  
Jui-Hsien Lu ◽  
Chang-Hao Yang ◽  
...  

Optic neuropathy is one of the leading causes of irreversible blindness caused by retinal ganglion cell (RGC) degeneration. The development of induced pluripotent stem cell (iPSC)-based therapy opens a therapeutic window for RGC degeneration, and tissue engineering may further promote the efficiency of differentiation process of iPSCs. The present study was designed to evaluate the effects of a novel biomimetic polybenzyl glutamate (PBG) scaffold on culturing iPSC-derived RGC progenitors. The iPSC-derived neural spheres cultured on PBG scaffold increased the differentiated retinal neurons and promoted the neurite outgrowth in the RGC progenitor layer. Additionally, iPSCs cultured on PBG scaffold formed the organoid-like structures compared to that of iPSCs cultured on cover glass within the same culture period. With RNA-seq, we found that cells of the PBG group were differentiated toward retinal lineage and may be related to the glutamate signaling pathway. Further ontological analysis and the gene network analysis showed that the differentially expressed genes between cells of the PBG group and the control group were mainly associated with neuronal differentiation, neuronal maturation, and more specifically, retinal differentiation and maturation. The novel electrospinning PBG scaffold is beneficial for culturing iPSC-derived RGC progenitors as well as retinal organoids. Cells cultured on PBG scaffold differentiate effectively and shorten the process of RGC differentiation compared to that of cells cultured on coverslip. The new culture system may be helpful in future disease modeling, pharmacological screening, autologous transplantation, as well as narrowing the gap to clinical application.


2018 ◽  
Vol 14 (3) ◽  
pp. 1800323 ◽  
Author(s):  
Nima Abdolvand ◽  
Rui Tostoes ◽  
William Raimes ◽  
Vijay Kumar ◽  
Nicolas Szita ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Guilan Li ◽  
Bingbing Xie ◽  
Liwen He ◽  
Tiancheng Zhou ◽  
Guanjie Gao ◽  
...  

Urine cells, a body trash, have been successfully reprogrammed into human induced pluripotent stem cells (U-hiPSCs) which hold a huge promise in regenerative medicine. However, it is unknown whether or to what extent U-hiPSCs can generate retinal cells so far. With a modified retinal differentiation protocol without addition of retinoic acid (RA), our study revealed that U-hiPSCs were able to differentiate towards retinal fates and form 3D retinal organoids containing laminated neural retina with all retinal cell types located in proper layer as in vivo. More importantly, U-hiPSCs generated highly mature photoreceptors with all subtypes, even red/green cone-rich photoreceptors. Our data indicated that a supplement of RA to culture medium was not necessary for maturation and specification of U-hiPSC-derived photoreceptors at least in the niche of retinal organoids. The success of retinal differentiation with U-hiPSCs provides many opportunities in cell therapy, disease modeling, and drug screening, especially in personalized medicine of retinal diseases since urine cells can be noninvasively collected from patients and their relatives.


Sign in / Sign up

Export Citation Format

Share Document