The Role of Cannabinoid Receptor 1 in the Immunopathology of Respiratory Syncytial Virus

2018 ◽  
Vol 31 (4) ◽  
pp. 292-298 ◽  
Author(s):  
Alireza Tahamtan ◽  
Masoumeh Tavakoli-Yaraki ◽  
Azadeh Shadab ◽  
Farhad Rezaei ◽  
Sayed Mahdi Marashi ◽  
...  
PEDIATRICS ◽  
1995 ◽  
Vol 96 (2) ◽  
pp. 391-391
Author(s):  
Leon S. Greos

Alveolar macrophages are infected by RSV in vivo and coexpress potent immunomodulatory molecules that potentially regulate local immune response or lung injury caused by RSV infection.


2005 ◽  
Vol 86 (4) ◽  
pp. 1103-1107 ◽  
Author(s):  
Blanca García-Barreno ◽  
John Steel ◽  
Monica Payá ◽  
Luis Martínez-Sobrido ◽  
Teresa Delgado ◽  
...  

The reactivity of a panel of 12 monoclonal antibodies raised against the human respiratory syncytial virus 22 kDa (22K) protein was tested by Western blotting with a set of 22K deletion mutants. The results obtained identified sequences in the C-terminal half of the 22K polypeptide required for integrity of most antibody epitopes, except for epitope 112, which was lost in mutants with short N-terminal deletions. This antibody, in contrast to the others, failed to immunoprecipitate the native 22K protein, indicating that the N terminus of this protein is buried in the native molecule and exposed only under the denaturing conditions of Western blotting. In addition, N-terminal deletions that abolished reactivity with monoclonal antibody 112 also inhibited phosphorylation of the 22K protein previously identified at Ser-58 and Ser-61, suggesting that the N terminus is important in regulating the 22K protein phosphorylation status, most likely as a result of its requirement for protein folding.


2018 ◽  
Vol 99 (4) ◽  
pp. 489-500 ◽  
Author(s):  
Daniela Machado ◽  
Andrés Pizzorno ◽  
Jonathan Hoffmann ◽  
Aurélien Traversier ◽  
Hubert Endtz ◽  
...  

Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 108
Author(s):  
Victor Latorre ◽  
Ron Geller

The viral order Mononegavirales consist of eight virus families. Members of these families include some of the most infectious (Measles, lethal (Ebola and Rabies), and most common viruses (Respiratory syncytial virus, RSV). Despite their medical importance, few vaccines and no antiviral treatments are available for treating infections with these viruses. Being obligate cellular parasites, viruses must rely on the cellular machinery for their replication. One example of this is the widespread use of molecular chaperones, which assist the correct folding of newly synthesized proteins, refold misfolded or aggregated proteins, and play key roles in maintaining proteostasis in cells. Targeting chaperones required for viral replication may, therefore, provide an antiviral approach. In this work, we set out to identify all the members of the cytoplasmic chaperone network that are involved in the replication of RSV using an RNA interference screen. Among our hits is valosin-containing protein (VCP; also known as p97), a chaperone involved in ubiquitin-mediated protein degradation, which has been shown to play a role in the life cycle of several viruses. We investigated the role of VCP during RSV and vesicular stomatitis virus (VSV) infections using specific VCP inhibitors. Our results suggest that VCP activity is necessary for RSV and VSV replication and may constitute a promising antiviral approach for the Mononegavirales.


Sign in / Sign up

Export Citation Format

Share Document