Strict Deformation Quantisation of the 𝐺-connections via Lie Groupoid

Author(s):  
Alan Lai
Keyword(s):  
2020 ◽  
Vol 2020 (760) ◽  
pp. 267-293 ◽  
Author(s):  
Alejandro Cabrera ◽  
Ioan Mărcuţ ◽  
María Amelia Salazar

AbstractWe give a direct, explicit and self-contained construction of a local Lie groupoid integrating a given Lie algebroid which only depends on the choice of a spray vector field lifting the underlying anchor map. This construction leads to a complete account of local Lie theory and, in particular, to a finite-dimensional proof of the fact that the category of germs of local Lie groupoids is equivalent to that of Lie algebroids.


2018 ◽  
Vol 2020 (21) ◽  
pp. 7662-7746 ◽  
Author(s):  
Marius Crainic ◽  
João Nuno Mestre ◽  
Ivan Struchiner

Abstract We study deformations of Lie groupoids by means of the cohomology which controls them. This cohomology turns out to provide an intrinsic model for the cohomology of a Lie groupoid with values in its adjoint representation. We prove several fundamental properties of the deformation cohomology including Morita invariance, a van Est theorem, and a vanishing result in the proper case. Combined with Moser’s deformation arguments for groupoids, we obtain several rigidity and normal form results.


2018 ◽  
Vol 2018 (735) ◽  
pp. 143-173 ◽  
Author(s):  
Matias del Hoyo ◽  
Rui Loja Fernandes

AbstractWe introduce a notion of metric on a Lie groupoid, compatible with multiplication, and we study its properties. We show that many families of Lie groupoids admit such metrics, including the important class of proper Lie groupoids. The exponential map of these metrics allows us to establish a linearization theorem for Riemannian groupoids, obtaining both a simpler proof and a stronger version of the Weinstein–Zung linearization theorem for proper Lie groupoids. This new notion of metric has a simplicial nature which will be explored in future papers of this series.


2018 ◽  
Vol 15 (08) ◽  
pp. 1830003 ◽  
Author(s):  
Víctor Manuel Jiménez ◽  
Manuel de León ◽  
Marcelo Epstein

A Lie groupoid, called second-order non-holonomic material Lie groupoid, is associated in a natural way to any Cosserat medium. This groupoid is used to give a new definition of homogeneity which does not depend on a material archetype. The corresponding Lie algebroid, called second-order non-holonomic material Lie algebroid, is used to characterize the homogeneity property of the material. We also relate these results with the previously obtained ones in terms of non-holonomic second-order [Formula: see text]-structures.


2021 ◽  
Vol 13 (3) ◽  
pp. 403
Author(s):  
Madeleine Jotz Lean ◽  
Kirill C. H. Mackenzie

<p style='text-indent:20px;'>The core diagram of a double Lie algebroid consists of the core of the double Lie algebroid, together with the two core-anchor maps to the sides of the double Lie algebroid. If these two core-anchors are surjective, then the double Lie algebroid and its core diagram are called <i>transitive</i>. This paper establishes an equivalence between transitive double Lie algebroids, and transitive core diagrams over a fixed base manifold. In other words, it proves that a transitive double Lie algebroid is completely determined by its core diagram.</p><p style='text-indent:20px;'>The comma double Lie algebroid associated to a morphism of Lie algebroids is defined. If the latter morphism is one of the core-anchors of a transitive core diagram, then the comma double algebroid can be quotiented out by the second core-anchor, yielding a transitive double Lie algebroid, which is the one that is equivalent to the transitive core diagram.</p><p style='text-indent:20px;'>Brown's and Mackenzie's equivalence of transitive core diagrams (of Lie groupoids) with transitive double Lie groupoids is then used in order to show that a transitive double Lie algebroid with integrable sides and core is automatically integrable to a transitive double Lie groupoid.</p>


2020 ◽  
Vol 27 (03) ◽  
pp. 2050015
Author(s):  
Katarzyna Grabowska ◽  
Janusz Grabowski ◽  
Marek Kuś ◽  
Giuseppe Marmo

We use the general setting for contrast (potential) functions in statistical and information geometry provided by Lie groupoids and Lie algebroids. The contrast functions are defined on Lie groupoids and give rise to two-forms and three-forms on the corresponding Lie algebroid. We study the case when the two-form is degenerate and show how in sufficiently regular cases one reduces it to a pseudometric structures. Transversal Levi-Civita connections for Riemannian foliations are generalized to the Lie groupoid/Lie algebroid case.


2018 ◽  
Vol 29 (09) ◽  
pp. 1850062 ◽  
Author(s):  
Iakovos Androulidakis ◽  
Paolo Antonini

Inspired by the work of Molino, we show that the integrability obstruction for transitive Lie algebroids can be made to vanish by adding extra dimensions. In particular, we prove that the Weinstein groupoid of a non-integrable transitive and abelian Lie algebroid is the quotient of a finite-dimensional Lie groupoid. Two constructions as such are given: First, explaining the counterexample to integrability given by Almeida and Molino, we see that it can be generalized to the construction of an “Almeida–Molino” integrable lift when the base manifold is simply connected. On the other hand, we notice that the classical de Rham isomorphism provides a universal integrable algebroid. Using it we construct a “de Rham” integrable lift for any given transitive Abelian Lie algebroid.


1999 ◽  
Vol 463 (1) ◽  
pp. 83-92 ◽  
Author(s):  
J. Balog ◽  
L. Fehér ◽  
L. Palla
Keyword(s):  

1999 ◽  
Vol 10 (04) ◽  
pp. 435-456 ◽  
Author(s):  
K. C. H. MACKENZIE

We prove that the cotangent of a double Lie groupoid S has itself a double groupoid structure with sides the duals of associated Lie algebroids, and double base the dual of the Lie algebroid of the core of S. Using this, we prove a result outlined by Weinstein in 1988, that the side groupoids of a general symplectic double groupoid are Poisson groupoids in duality. Further, we prove that any double Lie groupoid gives rise to a pair of Poisson groupoids (and thus of Lie bialgebroids) in duality. To handle the structures involved effectively we extend to this context the dualities and canonical isomorphisms for tangent and cotangent structures of the author and Ping Xu.


Sign in / Sign up

Export Citation Format

Share Document