scholarly journals Mechanisms of Transforming Growth Factor-β Receptor Endocytosis and Intracellular Sorting Differ between Fibroblasts and Epithelial Cells

2001 ◽  
Vol 12 (3) ◽  
pp. 675-684 ◽  
Author(s):  
Jules J.E. Doré ◽  
Diying Yao ◽  
Maryanne Edens ◽  
Nandor Garamszegi ◽  
Elizabeth L. Sholl ◽  
...  

Transforming growth factor-βs (TGF-β) are multifunctional proteins capable of either stimulating or inhibiting mitosis, depending on the cell type. These diverse cellular responses are caused by stimulating a single receptor complex composed of type I and type II receptors. Using a chimeric receptor model where the granulocyte/monocyte colony-stimulating factor receptor ligand binding domains are fused to the transmembrane and cytoplasmic signaling domains of the TGF-β type I and II receptors, we wished to describe the role(s) of specific amino acid residues in regulating ligand-mediated endocytosis and signaling in fibroblasts and epithelial cells. Specific point mutations were introduced at Y182, T200, and Y249 of the type I receptor and K277 and P525 of the type II receptor. Mutation of either Y182 or Y249, residues within two putative consensus tyrosine-based internalization motifs, had no effect on endocytosis or signaling. This is in contrast to mutation of T200 to valine, which resulted in ablation of signaling in both cell types, while only abolishing receptor down-regulation in fibroblasts. Moreover, in the absence of ligand, both fibroblasts and epithelial cells constitutively internalize and recycle the TGF-β receptor complex back to the plasma membrane. The data indicate fundamental differences between mesenchymal and epithelial cells in endocytic sorting and suggest that ligand binding diverts heteromeric receptors from the default recycling pool to a pathway mediating receptor down-regulation and signaling.

1997 ◽  
Vol 8 (11) ◽  
pp. 2133-2143 ◽  
Author(s):  
Robert A. Anders ◽  
Sandra L. Arline ◽  
Jules J.E. Doré ◽  
Edward B. Leof

Transforming growth factor β (TGFβ) family ligands initiate a cascade of events capable of modulating cellular growth and differentiation. The receptors responsible for transducing these cellular signals are referred to as the type I and type II TGFβ receptors. Ligand binding to the type II receptor results in the transphosphorylation and activation of the type I receptor. This heteromeric complex then propagates the signal(s) to downstream effectors. There is presently little data concerning the fate of TGFβ receptors after ligand binding, with conflicting reports indicating no change or decreasing cell surface receptor numbers. To address the fate of ligand-activated receptors, we have used our previously characterized chimeric receptors consisting of the ligand binding domain from the granulocyte/macrophage colony-stimulating factor α or β receptor fused to the transmembrane and cytoplasmic domain of the type I or type II TGFβ receptor. This system not only provides the necessary sensitivity and specificity to address these types of questions but also permits the differentiation of endocytic responses to either homomeric or heteromeric intracellular TGFβ receptor oligomerization. Data are presented that show, within minutes of ligand binding, chimeric TGFβ receptors are internalized. However, although all the chimeric receptor combinations show similar internalization rates, receptor down-regulation occurs only after activation of heteromeric TGFβ receptors. These results indicate that effective receptor down-regulation requires cross-talk between the type I and type II TGFβ receptors and that TGFβ receptor heteromers and homomers show distinct trafficking behavior.


1999 ◽  
Vol 274 (9) ◽  
pp. 5716-5722 ◽  
Author(s):  
Rebecca G. Wells ◽  
Lilach Gilboa ◽  
Yin Sun ◽  
Xuedong Liu ◽  
Yoav I. Henis ◽  
...  

2001 ◽  
Vol 12 (9) ◽  
pp. 2881-2893 ◽  
Author(s):  
Nandor Garamszegi ◽  
Jules J. E. Doré ◽  
Sumedha G. Penheiter ◽  
Maryanne Edens ◽  
Diying Yao ◽  
...  

Transforming growth factor β (TGF-β) coordinates a number of biological events important in normal and pathophysiological growth. In this study, deletion and substitution mutations were used to identify receptor motifs modulating TGF-β receptor activity. Initial experiments indicated that a COOH-terminal sequence between amino acids 482–491 in the kinase domain of the type I receptor was required for ligand-induced receptor signaling and down-regulation. These 10 amino acids are highly conserved in mammalian, Xenopus, andDrosophila type I receptors. Although mutation or deletion of the region (referred to as the NANDOR BOX, for nonactivating non–down-regulating) abolishes TGF-β–dependent mitogenesis, transcriptional activity, type I receptor phosphorylation, and down-regulation in mesenchymal cultures, adjacent mutations also within the kinase domain are without effect. Moreover, a kinase-defective type I receptor can functionally complement a mutant BOX expressing type I receptor, documenting that when the BOX mutant is activated, it has kinase activity. These results indicate that the sequence between 482 and 491 in the type I receptor provides a critical function regulating activation of the TGF-β receptor complex.


Blood ◽  
2005 ◽  
Vol 105 (5) ◽  
pp. 1977-1985 ◽  
Author(s):  
Hua Tang ◽  
Brad Low ◽  
Stacey A. Rutherford ◽  
Qin Hao

AbstractThrombin activates protease-activated receptor 1 (PAR1) on endothelial cells (ECs) and is critical for angiogenesis and vascular development. However, the mechanism underlying the proangiogenic effect of thrombin has not been elucidated yet. Here, we report the discovery of a novel functional link between thrombin-PAR1 and transforming growth factor-β (TGF-β) signaling pathways. We showed that thrombin via PAR1 induced the internalization of endoglin and type-II TGF-β receptor (TβRII) but not type-I receptors in human ECs. This effect was mediated by protein kinase C-ζ (PKC-ζ) since specific inhibition of PKC-ζ caused an aggregation of endoglin or TβRII on cell surface and blocked their internalization by thrombin. Furthermore, acute and long-term pretreatment of ECs with thrombin or PAR1 peptide agonist suppressed the TGF-β–induced serine phosphorylation of Smad2, a critical mediator of TGF-β signaling. Moreover, activation of PAR1 led to a profound and spread cytosolic clustering formation of Smad2/3 and markedly prevented Smad2/3 nuclear translocation evoked by TGF-β1. Since TGF-β plays a crucial role in the resolution phase of angiogenesis, the down-regulation of TGF-β signaling by thrombin-PAR1 pathway may provide a new insight into the mechanism of the proangiogenic effect of thrombin.


Sign in / Sign up

Export Citation Format

Share Document