scholarly journals The Golgi Complex Is a Microtubule-organizing Organelle

2001 ◽  
Vol 12 (7) ◽  
pp. 2047-2060 ◽  
Author(s):  
Karine Chabin-Brion ◽  
Jérôme Marceiller ◽  
Franck Perez ◽  
Catherine Settegrana ◽  
Anne Drechou ◽  
...  

We show that the Golgi complex can directly stimulate microtubule nucleation in vivo and in vitro and thus behaves as a potent microtubule-organizing organelle in interphase cells. With the use of nocodazole wash-out experiments in hepatic cells, we found that the occurrence of noncentrosomal, early stabilized microtubules is highly correlated with the subcellular localization of Golgi membranes. With the use of in vitro reconstituted microtubule assembly systems with or without cytosol, we also found that, in contrast to centrosomally attached microtubules, the distal ends of Golgi-attached microtubules are remotely stabilized in a way that requires additional cytosolic component(s). Finally, we demonstrate that Golgi-based microtubule nucleation is direct and involves a subset of γ-tubulin bound to the cytoplasmic face of the organelle.

1985 ◽  
Vol 100 (5) ◽  
pp. 1682-1689 ◽  
Author(s):  
B J Soltys ◽  
G G Borisy

Microtubule assembly in vivo was studied by hapten-mediated immunocytochemistry. Tubulin was derivatized with dichlorotriazinylaminofluorescein (DTAF) and microinjected into living, interphase mammalian cells. Sites of incorporation were determined at the level of individual microtubules by double-label immunofluorescence. The haptenized tubulin was localized by an anti-fluorescein antibody and a second antibody conjugated with fluorescein. Total microtubules were identified by anti-tubulin and a secondary antibody conjugated with rhodamine. Contrary to recent studies (Salmon, E. D., et al., 1984, J. Cell Biol., 99:2165-2174; Saxton, W. M., et al., 1984, J. Cell Biol., 99:2175-2186) which suggest that tubulin incorporates all along the length of microtubules in vivo, we found that microtubule assembly in interphase cells was in vivo, as in vitro, an end-mediated process. Microtubules that radiated out toward the cell periphery incorporated the DTAF-tubulin solely at their distal, that is, their plus ends. We also found that a proportion of the microtubules connected to the centrosomes incorporated the DTAF-tubulin along their entire length, which suggests that the centrosome can nucleate the formation of new microtubules.


Author(s):  
E. D. Salmon ◽  
J. C. Waters ◽  
C. Waterman-Storer

We have developed a multi-mode digital imaging system which acquires images with a cooled CCD camera (Figure 1). A multiple band pass dichromatic mirror and robotically controlled filter wheels provide wavelength selection for epi-fluorescence. Shutters select illumination either by epi-fluorescence or by transmitted light for phase contrast or DIC. Many of our experiments involve investigations of spindle assembly dynamics and chromosome movements in live cells or unfixed reconstituted preparations in vitro in which photodamage and phototoxicity are major concerns. As a consequence, a major factor in the design was optical efficiency: achieving the highest image quality with the least number of illumination photons. This principle applies to both epi-fluorescence and transmitted light imaging modes. In living cells and extracts, microtubules are visualized using X-rhodamine labeled tubulin. Photoactivation of C2CF-fluorescein labeled tubulin is used to locally mark microtubules in studies of microtubule dynamics and translocation. Chromosomes are labeled with DAPI or Hoechst DNA intercalating dyes.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Jie Zheng ◽  
Na Tian ◽  
Fei Liu ◽  
Yidian Zhang ◽  
Jingfen Su ◽  
...  

AbstractIntraneuronal accumulation of hyperphosphorylated tau is a hallmark pathology shown in over twenty neurodegenerative disorders, collectively termed as tauopathies, including the most common Alzheimer’s disease (AD). Therefore, selectively removing or reducing hyperphosphorylated tau is promising for therapies of AD and other tauopathies. Here, we designed and synthesized a novel DEPhosphorylation TArgeting Chimera (DEPTAC) to specifically facilitate the binding of tau to Bα-subunit-containing protein phosphatase 2A (PP2A-Bα), the most active tau phosphatase in the brain. The DEPTAC exhibited high efficiency in dephosphorylating tau at multiple AD-associated sites and preventing tau accumulation both in vitro and in vivo. Further studies revealed that DEPTAC significantly improved microtubule assembly, neurite plasticity, and hippocampus-dependent learning and memory in transgenic mice with inducible overexpression of truncated and neurotoxic human tau N368. Our data provide a strategy for selective removal of the hyperphosphorylated tau, which sheds new light for the targeted therapy of AD and related-tauopathies.


2002 ◽  
Vol 13 (2) ◽  
pp. 698-710 ◽  
Author(s):  
Sylvie Ozon ◽  
Antoine Guichet ◽  
Olivier Gavet ◽  
Siegfried Roth ◽  
André Sobel

Stathmin is a ubiquitous regulatory phosphoprotein, the generic element of a family of neural phosphoproteins in vertebrates that possess the capacity to bind tubulin and interfere with microtubule dynamics. Although stathmin and the other proteins of the family have been associated with numerous cell regulations, their biological roles remain elusive, as in particular inactivation of the stathmin gene in the mouse resulted in no clear deleterious phenotype. We identified stathmin phosphoproteins inDrosophila, encoded by a unique gene sharing the intron/exon structure of the vertebrate stathmin andstathmin family genes. They interfere with microtubule assembly in vitro, and in vivo when expressed in HeLa cells. Drosophila stathmin expression is regulated during embryogenesis: it is high in the migrating germ cells and in the central and peripheral nervous systems, a pattern resembling that of mammalian stathmin. Furthermore, RNA interference inactivation ofDrosophila stathmin expression resulted in germ cell migration arrest at stage 14. It also induced important anomalies in nervous system development, such as loss of commissures and longitudinal connectives in the ventral cord, or abnormal chordotonal neuron organization. In conclusion, a single Drosophilagene encodes phosphoproteins homologous to the entire vertebrate stathmin family. We demonstrate for the first time their direct involvement in major biological processes such as development of the reproductive and nervous systems.


1978 ◽  
Vol 33 (1) ◽  
pp. 227-234
Author(s):  
S.F. Ng

A temperature-sensitive mutant homozygous for the recessive gene molb in Tetrahymena thermophila offers opportunity for studying the direction of microtubule assembly in vivo. At 39 degrees C the mutant fails to divide properly; the 2 daughter animals remain attached and bend over each other. As revealed by protargol staining, the bending results in acute turning and breaking of some of the longitudinal microtubular bands close and parallel to the surface. Hence, 2 broken microtubular ends are available for study of the problem of directionality of microtubule assembly, by assessing which of the 2 ends regenerates. In most cases the posterior portion of the longitudinal microtubular band regenerates. The present study hence supports the conclusion based on in vitro observation in other systems that microtubule assembly is predominantly unidirectional.


1981 ◽  
Vol 49 (1) ◽  
pp. 33-49 ◽  
Author(s):  
R. Kuriyama ◽  
H. Kanatani

Centrioles from spermatozoa of the starfish, Asterina pectinifera, were isolated and partially purified by solubilization of chromatin followed by sucrose density-gradient centrifugation. The ultrastructure of the isolated centriolar complex was investigated in whole mount preparations by electron microscopy. The complex unit was composed of a pair of centrioles and a pericentriolar structure, which associated with the distal end of the distal centriole by 9 spoke-like satellites extending radially to a marginal ring. Each satellite bifurcated at a dense node forming 2 fan-like shapes with a periodic striated pattern. The tubular structure of the centrioles easily disintegrated, leaving the pericentriolar structure or axonemal microtubules intact. The distal centriole in a spermatozoon served as an initiating site for flagellar microtubule assembly; that is, a number of “9 + 2′ axonemal tubules were observed adhering just beneath the distal end of the basal body. In experiments in vitro, polymerization of microtubule proteins purified from porcine brain was initiated by the structure at the ends of both proximal and distal centrioles, but not from the satellites or the marginal ring. Also, few if any microtubules were formed from the sides of each centriole, even in the presence of a high concentration of exogenous tubulin. On the other hand, centrioles of spermatozoa, when they were in mature ooplasm, could initiate the formation of sperm asters by microtubules. Therefore, centrioles in spermatozoa seem to be able to initiate microtubules in a 2 ways. A possible explanation of the difference between the 2 types of microtubule organization in vivo, i.e. in the sperm cell itself and in the ooplasm, it discussed.


2003 ◽  
Vol 162 (3) ◽  
pp. 403-412 ◽  
Author(s):  
Pierre Morsomme ◽  
Cristina Prescianotto-Baschong ◽  
Howard Riezman

Glycosylphosphatidylinositol (GPI)-anchored proteins exit the ER in distinct vesicles from other secretory proteins, and this sorting event requires the Rab GTPase Ypt1p, tethering factors Uso1p, and the conserved oligomeric Golgi complex. Here we show that proper sorting depended on the vSNAREs, Bos1p, Bet1p, and Sec22p. However, the t-SNARE Sed5p was not required for protein sorting upon ER exit. Moreover, the sorting defect observed in vitro with bos1–1 extracts was also observed in vivo and was visualized by EM. Finally, transport and maturation of the GPI-anchored protein Gas1p was specifically affected in a bos1–1 mutant at semirestrictive temperature. Therefore, we propose that v-SNAREs are part of the cargo protein sorting machinery upon exit from the ER and that a correct sorting process is necessary for proper maturation of GPI-anchored proteins.


1993 ◽  
Vol 104 (4) ◽  
pp. 1119-1127 ◽  
Author(s):  
Q. Zhu ◽  
T. Liu ◽  
M. Clarke

In amoebae of the eukaryotic microorganism Dictyostelium discoideum, calmodulin is greatly enriched on membranes of the contractile vacuole complex, an osmoregulatory organelle. Antibodies specific for Dictyostelium calmodulin were used in the present study to immunolocalize the contractile vacuole complex in relation to the Golgi complex (detected with wheat germ agglutinin) and the microtubule organizing center (MTOC, detected with anti-tubulin antibodies). Cells were examined throughout the cell cycle. Double-staining experiments indicated that the contractile vacuole complex extended to the MTOC in interphase cells, usually, but not always, overlapping the Golgi complex. In metaphase and anaphase cells, the Golgi staining became diffuse, suggesting dispersal of Golgi membranes. In the same mitotic cells, anti-calmodulin antibodies labeled numerous small cortical vacuoles, indicating that the contractile vacuole complex had also become dispersed. When living mitotic cells were examined, the small cortical vacuoles were seen to be active, implying that all parts of the Dictyostelium contractile vacuole complex possess the ability to accumulate fluid and fuse with the plasma membrane. In contrast to observations reported for other types of cells, anti-calmodulin antibodies did not label the mitotic spindle in Dictyostelium. Despite this difference in localization, it is possible that vacuole-associated calmodulin in Dictyostelium cells and spindle-associated calmodulin in larger eukaryotic cells might perform a similar function, namely, regulating calcium levels.


1992 ◽  
Vol 102 (1) ◽  
pp. 91-102 ◽  
Author(s):  
M. Kallajoki ◽  
K. Weber ◽  
M. Osborn

The SPN antigen plays an essential role in mitosis, since microinjection of antibodies causes mitotic arrest. Here we show, by examination of the relative locations of SPN antigen, the centrosomal 5051 antigen and tubulin in normal mitotic, and in taxol-treated mitotic cells, that the SPN antigen is involved in organizing the microtubules of the spindle. The 210 kDa protein defined as SPN antigen relocates from the nuclear matrix to the centrosome at prophase, remains associated with the poles at metaphase and anaphase, and dissociates from the centrosomes in telophase. In taxol-treated mitotic cells, SPN staining shows a striking redistribution while 5051 antigen remains associated with centrosomes. SPN antigen is seen at the plasma membrane end of the rearranged microtubules. SPN antigen is always at the center of the multiple microtubule asters (5 to 20 per cell) induced by taxol, whereas 5051 again remains associated with the centrosomal complex (1 to 2 foci per cell). Microtubule nucleation is associated with the SPN antigen rather than with the 5051 antigen. Microinjection of SPN-3 antibody into taxol-treated mitotic PtK2 cells causes disruption of the asters as judged by tubulin staining of the same cells. Finally, SPN antigen extracted in soluble form from synchronized mitotic HeLa cells binds to, and sediments with, pig brain microtubules stabilized by taxol. This association of SPN antigen with microtubules is partially dissociated by 0.5 M NaCl but not by 5 mM ATP. Thus SPN antigen binds to microtubules in vitro and seems to act as a microtubular minus-end organizer in mitotic cells in vivo.


1998 ◽  
Vol 42 (9) ◽  
pp. 2188-2192 ◽  
Author(s):  
Jeffrey R. Aeschlimann ◽  
Michael J. Rybak

ABSTRACT Quinupristin-dalfopristin (Q-D) is a new water-soluble, semisynthetic antibiotic that is derived from natural streptogramins and that is combined in a 30:70 ratio. A number of studies have described the pharmacodynamic properties of this drug, but most have investigated only staphylococci or streptococci. We evaluated the relationship between Q-D, quinupristin (Q), and/or dalfopristin (D) susceptibility parameters and antibacterial activities against 22 clinical isolates of vancomycin-resistant Enterococcus faecium (VREF) by using the concentration-time-kill-curve method and by measuring postantibiotic effects. Q-D, Q, and D MICs and minimum bactericidal concentrations (MBCs) ranged from 0.125 to 1 and 0.25 to 64, 8 to 512 and >512, and 2 to 8 and 8 to 512 μg/ml, respectively. There were no significant relationships between susceptibilities to the individual components and the susceptibilities to the Q-D combination product. In the time-kill-curves studies, Q-D at a concentration of 6 μg/ml was at least bacteriostatic against all VREF tested. There was increased activity against more susceptible isolates when the isolates were grouped either by Q-D MBCs or by Q MICs. By multivariate regression analyses, the percent change in the inoculum from that at the baseline was significantly correlated with the Q MIC (R = 0.74; P = 0.008) and the Q-D concentration-to-MBC ratio (R = 0.58;P = 0.02) and was inversely correlated with the Q-D MBC-to-MIC ratio (R = 0.68; P = 0.003). A strong correlation existed between the killing rate and the Q-D concentration-to-MBC ratio (R = 0.99;P < 0.0001). Time to 99.9% killing was best correlated with the Q-D MBC (R = 0.96;P < 0.0001). The postantibiotic effect ranged from 0.2 to 3.2 h and was highly correlated with the Q-D concentration-to-MBC ratio (R = 0.96;P < 0.0001) and was less highly correlated with the Q MIC (R = 0.42; P = 0.04). Further study of these relationships with in vitro or in vivo infection models that simulate Q-D pharmacokinetics should further define the utility of these pharmacodynamic parameters in the prediction of Q-D activity for the treatment of VREF infections in humans.


Sign in / Sign up

Export Citation Format

Share Document