scholarly journals Nerve growth factor induces the association of a 130-Kd phosphoprotein with its receptor in PC-12 pheochromocytoma cells.

1991 ◽  
Vol 2 (9) ◽  
pp. 691-697 ◽  
Author(s):  
M Ohmichi ◽  
S J Decker ◽  
A R Saltiel

To explore the molecular mechanisms of nerve growth factor (NGF) action, we have attempted to identify proteins that immunoprecipitate with the NGF receptor. An anti-NGF receptor antibody was developed that immunoprecipitated the 75-Kd receptor in PC-12 cells. In [35S]methionine-labeled cells lysed with nonionic detergent, immunoprecipitation with this antireceptor antisera specifically brought down several associated proteins, although prior treatment of cells with NGF produced no apparent change in the distribution of these proteins. However, in vitro phosphorylation assays of the immunoprecipitated complex revealed the presence of a serine kinase that phosphorylated two predominant substrates with Mrs of 60 and 130 Kd. Prior treatment of cells produced no change in the appearance of the 60-Kd phosphoprotein, but NGF did stimulate the appearance of the 130-Kd protein. This effect was observed with as little as 0.1 nM NGF and was maximal at 5 min, but declined thereafter. Prior treatment of cells with NGF did not increase the phosphorylation of enolase added exogenously to the immunoprecipitates, suggesting that this action of NGF may have reflected the hormone-dependent association of the 130-Kd protein with the receptor, rather than activation of a receptor-associated kinase. Thus the association of the NGF 75-Kd receptor with a 130-Kd protein may be involved in signal transduction for the growth factor, although the role of this receptor in the NGF-dependent tyrosine phosphorylation remains unclear.

1985 ◽  
Vol 101 (5) ◽  
pp. 1799-1807 ◽  
Author(s):  
D G Drubin ◽  
S C Feinstein ◽  
E M Shooter ◽  
M W Kirschner

Nerve growth factor (NGF) regulates the microtubule-dependent extension and maintenance of axons by some peripheral neurons. We show here that one effect of NGF is to promote microtubule assembly during neurite outgrowth in PC12 cells. Though NGF causes an increase in total tubulin levels, the formation of neurites and the assembly of microtubules follow a time course completely distinct from that of the tubulin induction. The increases in microtubule mass and neurite extension closely parallel 10- and 20-fold inductions of tau and MAP1, proteins shown previously to promote microtubule assembly in vitro. When NGF is removed from PC12 cells, neurites disappear, microtubule mass decreases, and both microtubule-associated proteins return to undifferentiated levels. These data suggest that the induction of tau and MAP1 in response to NGF promotes microtubule assembly and that these factors are therefore key regulators of neurite outgrowth.


Reproduction ◽  
2020 ◽  
Vol 160 (3) ◽  
pp. 405-415
Author(s):  
Qiaoge Niu ◽  
Maosheng Cao ◽  
Chenfeng Yuan ◽  
Yuwen Huang ◽  
Zijiao Zhao ◽  
...  

Nerve growth factor (NGF) has been proved to play important roles in male reproductive physiology, but the molecular mechanisms of NGF action remain unclear. In this study, the effects of NGF on the growth of newborn bovine testicular Sertoli (NBS) cells and the related signaling pathways were investigated. The NBS cells were treated in vitro with NGF (100 ng/mL) for 18 h. The expression levels of cell proliferation related genes, INHBB, and cytoplasmic specialization related gene were determined using real-time PCR and Western blot. The roles of PI3K/AKT and MAPK/ERK pathways in NGF-induced cell proliferation were investigated. It was found that NGF regulates proliferation and function of NBS cells via its receptor NTRK1 by activating the PI3K/ATK and MAPK/ERK signaling pathways. The study will help to further understand the role of NGF in male reproduction and provide new therapeutic targets for reproductive dysfunctions in male animals.


1985 ◽  
Vol 101 (3) ◽  
pp. 1107-1114 ◽  
Author(s):  
P S DiStefano ◽  
J B Schweitzer ◽  
M Taniuchi ◽  
E M Johnson

A hybrid toxin composed of ricin A chain and a monoclonal antibody directed against the rat nerve growth factor (NGF) receptor (192-IgG) was prepared using the heterobifunctional cross-linking agent N-succinimidyl-3-(2-pyridyldithio)-propionate and purified by affinity chromatography. Characterization studies showed that the hybrid, 192-s-s-A, displaced bound 125I-labeled 192-IgG from rat superior cervical ganglion (SCG) membranes with an IC50 3-5 times lower than that of unconjugated 192-IgG. When incubated with cultured rat SCG neurons, 192-s-s-A inhibited protein synthesis in a concentration-dependent fashion. The effect of 192-s-s-A on these neurons was reversed by coincubation with an excess of 192-IgG. The IC50 of 192-s-s-A on protein synthesis in rat SCG neurons was 4 nM. Intact ricin and ricin A chain inhibited protein synthesis in these neurons with IC50 values of 5 pM and 500 nM, respectively. The 192-s-s-A hybrid had no effect on mouse SCG neurons or a human melanoma cell line known to have NGF receptors. This is consistent with the finding that 192-IgG recognizes only the rat NGF receptor. Also, 192-s-s-A did not inhibit protein synthesis in primary cultures of rat skeletal muscle or Vero cells, which do not have cell surface receptors for NGF. 192-s-s-A was able to inhibit protein synthesis in PC12 cells but the potency was 10-100 times less in these cells compared to rat SCG neurons. Ricin and A chain were also 10-100 times less potent in PC12 cells than neurons. Rat SCG neurons exposed to 192-s-s-A lost their refractile appearance under phase-contrast optics, showed granular degeneration of neurites, and died. Thus the decreased protein synthesis caused by the hybrid toxin correlated with the morphological destruction of the neurons. 192-s-s-A represents a potentially powerful tool by which to selectively destroy NGF receptor-bearing cells in vitro. The hybrid toxin may prove useful as an in vivo toxin.


Author(s):  
Ф.М. Шакова ◽  
Т.И. Калинина ◽  
М.В. Гуляев ◽  
Г.А. Романова

Цель исследования - изучение влияния комбинированной терапии (мутантные молекулы эритропоэтина (EPO) и дипептидный миметик фактора роста нервов ГК-2H) на воспроизведение условного рефлекса пассивного избегания (УРПИ) и объем поражения коры мозга у крыс с двусторонним ишемическим повреждением префронтальной коры. Методика. Мутантные молекулы EPO (MЕРО-TR и MЕPО-Fc) с значительно редуцированной эритропоэтической и выраженной цитопротекторной активностью созданы методом генной инженерии. Используемый миметик фактора роста нервов человека, эндогенного регуляторного белка, в экспериментах in vitro проявлял отчетливые нейропротективные свойства. Двустороннюю фокальную ишемию префронтальной коры головного мозга крыс создавали методом фотохимического тромбоза. Выработку и оценку УРПИ проводили по стандартной методике. Объем повреждения мозга оценивался при помощи МРТ. MEPO-TR и MEPO-Fc (50 мкг/кг) вводили интраназально однократно через 1 ч после фототромбоза, ГК-2Н (1 мг/кг) - внутрибрюшинно через 4 ч после фототромбоза и далее в течение 4 послеоперационных суток. Результаты. Выявлено статистически значимое сохранение выработанного до ишемии УРПИ, а также значимое снижение объема повреждения коры при комплексной терапии. Полученные данные свидетельствуют об антиамнестическом и нейропротекторном эффектах примененной комбинированной терапии, которые наиболее отчетливо выражены в дозах: МEPO-Fc (50 мкг/кг) и ГК-2Н (1 мг/кг). Заключение. Подтвержден нейропротекторный эффект и усиление антиамнестического эффекта при сочетанном применении мутантных производных эритропоэтина - MEPO-TR и MEPO-Fc и дипептидного миметика фактора роста нервов человека ГК-2H. The aim of this study was to investigate the effect of combination therapy, including mutant erythropoietin molecules (EPO) and a dipeptide mimetic of the nerve growth factor, GK-2H, on the conditioned passive avoidance (PA) reflex and the volume of injury induced by bilateral ischemia of the prefrontal cortex in rats. Using the method of genetic engineering the mutant molecules of EPO, MERO-TR and MEPO-Fc, with strongly reduced erythropoietic and pronounced cytoprotective activity were created. The used human nerve growth factor mimetic, an endogenous regulatory protein based on the b-bend of loop 4, which is a dimeric substituted dipeptide of bis- (N-monosuccinyl-glycyl-lysine) hexamethylenediamine, GK-2 human (GK-2H), has proven neuroprotective in in vitro experiments. Methods. Bilateral focal ischemic infarction was modeled in the rat prefrontal cortex by photochemically induced thrombosis. The PA test was performed according to a standard method. Volume of brain injury was estimated using MRI. MEPO-TR, and MEPO-Fc (50 mg/kg, intranasally) were administered once, one hour after the injury. GK-2Н (1 mg/kg, i.p.) was injected four hours after the injury and then for next four days. Results. The study showed that the complex therapy provided statistically significant retention of the PA reflex developed prior to ischemia and a significant decrease in the volume of injury. The anti-amnestic and neuroprotective effects of combination therapy were most pronounced at doses of MEPO-Fc 50 mg/kg and GK-2H 1 mg/kg. Conclusion. This study has confirmed the neuroprotective effect and enhancement of the anti-amnestic effect exerted by the combination of mutant erythropoietin derivatives, MEPO-TR and MEPO-Fc, and the dipeptide mimetic of human growth factor GK-2H.


1992 ◽  
Vol 117 (3) ◽  
pp. 629-641 ◽  
Author(s):  
M Parvinen ◽  
M Pelto-Huikko ◽  
O Söder ◽  
R Schultz ◽  
A Kaipia ◽  
...  

beta-Nerve growth factor (NGF) is expressed in spermatogenic cells and has testosterone-downregulated low-affinity receptors on Sertoli cells suggesting a paracrine role in the regulation of spermatogenesis. An analysis of the stage-specific expression of NGF and its low affinity receptor during the cycle of the seminiferous epithelium in the rat revealed NGF mRNA and protein at all stages of the cycle. Tyrosine kinase receptor (trk) mRNA encoding an essential component of the high-affinity NGF receptor was also present at all stages. In contrast, expression of low affinity NGF receptor mRNA was only found in stages VIIcd and VIII of the cycle, the sites of onset of meiosis. The low-affinity NGF receptor protein was present in the plasma membrane of the apical Sertoli cell processes as well as in the basal plasma membrane of these cells at stages VIIcd to XI. NGF was shown to stimulate in vitro DNA synthesis of seminiferous tubule segments with preleptotene spermatocytes at the onset of meiosis while other segments remained nonresponsive. We conclude that NGF is a meiotic growth factor that acts through Sertoli cells.


Sign in / Sign up

Export Citation Format

Share Document