scholarly journals In vitro reconstitution of a heterotrimeric nucleoporin complex consisting of recombinant Nsp1p, Nup49p, and Nup57p.

1997 ◽  
Vol 8 (1) ◽  
pp. 33-46 ◽  
Author(s):  
N L Schlaich ◽  
M Häner ◽  
A Lustig ◽  
U Aebi ◽  
E C Hurt

The yeast nucleoporins Nsp1p, Nup49p, and Nup57p form a complex at the nuclear pores which is involved in nucleocytoplasmic transport. To investigate the molecular basis underlying complex formation, recombinant full-length Nup49p and Nup57p and the carboxyl-terminal domain of Nsp1p, which lacks the FXFG repeat domain, were expressed in Escherichia coli. When the three purified proteins were mixed together, they spontaneously associated to form a 150-kDa complex of 1:1:1 stoichiometry. In this trimeric complex, Nup57p fulfills the role of an organizing center, to which Nup49p and Nsp1p individually bind. For this interaction to occur, only two heptad repeat regions of the Nsp1p carboxyl-terminal domain are required, each region being about 50 amino acids in length. Finally, the reconstituted complex has the capability to bind to full-length Nic96p but not to mutant forms which also do not interact in vivo. When added to permeabilized yeast cells, the complex associates with the nuclear envelope and the nuclear pores. We conclude that Nsp1p, Nup49p, and Nup57p can reconstitute a complex in vitro which is competent for further assembly with other components of nuclear pores.

Endocrinology ◽  
2006 ◽  
Vol 147 (4) ◽  
pp. 1621-1631 ◽  
Author(s):  
John W. M. Creemers ◽  
Lynn E. Pritchard ◽  
Amy Gyte ◽  
Philippe Le Rouzic ◽  
Sandra Meulemans ◽  
...  

Agouti-related protein (AGRP) plays a key role in energy homeostasis. The carboxyl-terminal domain of AGRP acts as an endogenous antagonist of the melanocortin-4 receptor (MC4-R). It has been suggested that the amino-terminal domain of AGRP binds to syndecan-3, thereby modulating the effects of carboxyl-terminal AGRP at the MC4-R. This model assumes that AGRP is secreted as a full-length peptide. In this study we found that AGRP is processed intracellularly after Arg79-Glu80-Pro81-Arg82. The processing site suggests cleavage by proprotein convertases (PCs). RNA interference and overexpression experiments showed that PC1/3 is primarily responsible for cleavage in vitro, although both PC2 and PC5/6A can also process AGRP. Dual in situ hybridization demonstrated that PC1/3 is expressed in AGRP neurons in the rat hypothalamus. Moreover, hypothalamic extracts from PC1-null mice contained 3.3-fold more unprocessed full-length AGRP, compared with wild-type mice, based on combined HPLC and RIA analysis, demonstrating that PC1/3 plays a role in AGRP cleavage in vivo. We also found that AGRP83–132 is more potent an antagonist than full-length AGRP, based on cAMP reporter assays, suggesting that posttranslational cleavage is required to potentiate the effect of AGRP at the MC4-R. Because AGRP is cleaved into distinct amino-terminal and carboxyl-terminal peptides, we tested whether amino-terminal peptides modulate food intake. However, intracerebroventricular injection of rat AGRP25–47 and AGRP50–80 had no effect on body weight, food intake, or core body temperature. Because AGRP is cleaved before secretion, syndecan-3 must influence food intake independently of the MC4-R.


1995 ◽  
Vol 15 (3) ◽  
pp. 1203-1209 ◽  
Author(s):  
J Horiuchi ◽  
N Silverman ◽  
G A Marcus ◽  
L Guarente

Mutations in yeast ADA2, ADA3, and GCN5 weaken the activation potential of a subset of acidic activation domains. In this report, we show that their gene products form a heterotrimeric complex in vitro, with ADA2 as the linchpin holding ADA3 and GCN5 together. Further, activation by LexA-ADA3 fusions in vivo are regulated by the levels of ADA2. Combined with a prior observation that LexA-ADA2 fusions are regulated by the levels of ADA3 (N. Silverman, J. Agapite, and L. Guarente, Proc. Natl. Acad. Sci. USA 91:11665-11668, 1994), this finding suggests that these proteins also form a complex in cells. ADA3 can be separated into two nonoverlapping domains, an amino-terminal domain and a carboxyl-terminal domain, which do not separately complement the slow-growth phenotype or transcriptional defect of a delta ada3 strain but together supply full complementation. The carboxyl-terminal domain of ADA3 alone suffices for heterotrimeric complex formation in vitro and activation of LexA-ADA2 in vivo. We present a model depicting the ADA complex as a coactivator in which the ADA3 amino-terminal domain mediates an interaction between activation domains and the ADA complex.


2000 ◽  
Vol 182 (12) ◽  
pp. 3529-3535 ◽  
Author(s):  
Carolyn C. Holcroft ◽  
Susan M. Egan

ABSTRACT The Escherichia coli rhaBAD operon encodes the enzymes for catabolism of the sugar l-rhamnose. FullrhaBAD activation requires the AraC family activator RhaS (bound to a site that overlaps the −35 region of the promoter) and the cyclic AMP receptor protein (CRP; bound immediately upstream of RhaS at −92.5). We tested alanine substitutions in activating regions (AR) 1 and 2 of CRP for their effect onrhaBAD activation. Some, but not all, of the substitutions in both AR1 and AR2 resulted in approximately twofold defects in expression from rhaBAD promoter fusions. We also expressed a derivative of the α subunit of RNA polymerase deleted for the entire C-terminal domain (α-Δ235) and assayed expression from rhaBAD promoter fusions. The greatest defect (54-fold) occurred at a truncated promoter where RhaS was the only activator, while the defect at the full-length promoter (RhaS plus CRP) was smaller (13-fold). Analysis of a plasmid library expressing alanine substitutions at every residue in the carboxyl-terminal domain of the α subunit (α-CTD) identified 15 residues (mostly in the DNA-binding determinant) that were important at both the full-length and truncated promoters. Only one substitution was defective at the full-length but not the truncated promoter, and this residue was located in the DNA-binding determinant. Six substitutions were defective only at the promoter activated by RhaS alone, and these may define a protein-contacting determinant on α-CTD. Overall, our results suggest that CRP interaction with α-CTD may not be required for rhaBAD activation; however, α-CTD does contribute to full activation, probably through interactions with DNA and possibly RhaS.


2001 ◽  
Vol 21 (23) ◽  
pp. 7944-7955 ◽  
Author(s):  
Susanne M. Bailer ◽  
Carolin Balduf ◽  
Ed Hurt

ABSTRACT Nucleoporin Nsp1p, which has four predicted coiled-coil regions (coils 1 to 4) in the essential carboxy-terminal domain, is unique in that it is part of two distinct nuclear pore complex (NPC) subcomplexes, Nsp1p-Nup57p-Nup49p-Nic96p and Nsp1p-Nup82p-Nup159p. As shown by in vitro reconstitution, coiled-coil region 2 (residues 673 to 738) is sufficient to form heterotrimeric core complexes and can bind either Nup57p or Nup82p. Accordingly, interaction of Nup82p with Nsp1p coil 2 is competed by excess Nup57p. Strikingly, coil 3 and 4 mutants are still assembled into the core Nsp1p-Nup57p-Nup49p complex but no longer associate with Nic96p. Consistently, the Nsp1p-Nup57p-Nup49p core complex dissociates from the nuclear pores in nsp1coil 3 and 4 mutant cells, and as a consequence, defects in nuclear protein import are observed. Finally, the nsp1-L640Stemperature-sensitive mutation, which maps in coil 1, leads to a strong nuclear mRNA export defect. Thus, distinct coiled-coil regions within Nsp1p-C have separate functions that are related to the assembly of different NPC subcomplexes, nucleocytoplasmic transport, and incorporation into the nuclear pores.


1993 ◽  
Vol 90 (23) ◽  
pp. 11167-11171 ◽  
Author(s):  
R Baskaran ◽  
M E Dahmus ◽  
J Y Wang

The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II is composed of tandem repeats of the consensus sequence Tyr-Ser-Pro-Thr-Ser-Pro-Ser. Phosphorylation of the CTD occurs during formation of the initiation complex and is correlated with the transition from complex assembly to elongation. Previously, serine and threonine residues within the CTD have been shown to be modified by the addition of phosphate and by the addition of O-linked GlcNAc. Our results establish that the CTD is also modified in vivo by phosphorylation on tyrosine. Furthermore, a nuclear tyrosine kinase encoded by the c-abl protooncogene phosphorylates the CTD to a high stoichiometry in vitro. Under conditions of maximum phosphorylation, approximately 30 mol of phosphate are incorporated per mol of CTD. The observation that the CTD is not phosphorylated by c-Src tyrosine kinase under identical conditions indicates that the CTD is not a substrate of all tyrosine kinases. Phosphorylation of tyrosine residues within the CTD may modulate the interaction of RNA polymerase II with the preinitiation complex and, hence, may be important in regulating gene expression.


2001 ◽  
Vol 21 (19) ◽  
pp. 6651-6659 ◽  
Author(s):  
Koyomi Miyazaki ◽  
Miho Mesaki ◽  
Norio Ishida

ABSTRACT Mammalian PERIOD2 protein (PER2) is the product of a clock gene that controls circadian rhythms, because PER2-deficient mice have an arrhythmic phenotype. The nuclear entry regulation of clock gene products is a key step in proper circadian rhythm formation in bothDrosophila and mammals, because the periodic transcription of clock genes is controlled by an intracellular, oscillating, negative feedback loop. The present study used deletion mutants of rat PER2 (rPER2) to identify the functional nuclear localization signal (NLS) in rPER2. The elimination of putative NLS (residues 778 to 794) from the rPER2 fragment resulted in the loss of nuclear entry activity. Adding the NLS to the cytosolic protein (bacterial alkaline phosphatase) translocates the fusion protein to the nuclei. The data indicate the presence of a functional NLS in rPER2. Furthermore, intact rPER2 was preferentially translocated from the cytoplasm to the nucleus when coexpressed with human CRY1 (hCRY1). However, rPER2 mutants lacking a carboxyl-terminal domain could not enter the nucleus even in the presence of hCRY1. In addition, coexpression of the nuclear localization domain (residues 512 to 794) lacking rPER2 and CRY1 changed the subcellular localization of CRY1 from the nucleus to the cytoplasm. In vitro protein interaction studies demonstrated that the carboxyl-terminal domain of rPER2 is essential for binding to CRY1. The data suggested that both the rPER2 NLS and carboxyl-terminal CRY binding domain are essential for nuclear entry of the rPER2-CRY1 complex.


1996 ◽  
Vol 7 (2) ◽  
pp. 261-272 ◽  
Author(s):  
U Gottwald ◽  
R Brokamp ◽  
I Karakesisoglou ◽  
M Schleicher ◽  
A A Noegel

In search for novel actin binding proteins in Dictyostelium discoideum we have isolated a cDNA clone coding for a protein of approximately 50 kDa that is highly homologous to the class of adenylyl cyclase-associated proteins (CAP). In Saccharomyces cerevisiae the amino-terminal part of CAP is involved in the regulation of the adenylyl cyclase whereas the loss of the carboxyl-terminal domain results in morphological and nutritional defects. To study the interaction of Dictyostelium CAP with actin, the complete protein and its amino-terminal and carboxyl-terminal domains were expressed in Escherichia coli and used in actin binding assays. CAP sequestered actin in a Ca2+ independent way. This activity was localized to the carboxyl-terminal domain. CAP and its carboxyl-terminal domain led to a fluorescence enhancement of pyrene-labeled G-actin up to 50% indicating a direct interaction, whereas the amino-terminal domain did not enhance. In polymerization as well as in viscometric assays the ability of the carboxyl-terminal domain to sequester actin and to prevent F-actin formation was approximately two times higher than that of intact CAP. The sequestering activity of full length CAP could be inhibited by phosphatidylinositol 4,5-bisphosphate (PIP2), whereas the activity of the carboxyl-terminal domain alone was not influenced, suggesting that the amino-terminal half of the protein is required for the PIP2 modulation of the CAP function. In profilin-minus cells the CAP concentration is increased by approximately 73%, indicating that CAP may compensate some profilin functions in vivo. In migrating D. discoideum cells CAP was enriched at anterior and posterior plasma membrane regions. Only a weak staining of the cytoplasm was observed. In chemotactically stimulated cells the protein was very prominent in leading fronts. The data suggest an involvement of D. discoideum CAP in microfilament reorganization near the plasma membrane in a PIP2-regulated manner.


Genes ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 411 ◽  
Author(s):  
Nickens ◽  
Sausen ◽  
Bochman

: Pif1 family helicases represent a highly conserved class of enzymes involved in multiple aspects of genome maintenance. Many Pif1 helicases are multi-domain proteins, but the functions of their non-helicase domains are poorly understood. Here, we characterized how the N-terminal domain (NTD) of the Saccharomyces cerevisiae Pif1 helicase affects its functions both in vivo and in vitro. Removal of the Pif1 NTD alleviated the toxicity associated with Pif1 overexpression in yeast. Biochemically, the N-terminally truncated Pif1 (Pif1ΔN) retained in vitro DNA binding, DNA unwinding, and telomerase regulation activities, but these activities differed markedly from those displayed by full-length recombinant Pif1. However, Pif1ΔN was still able to synergize with the Hrq1 helicase to inhibit telomerase activity in vitro, similar to full-length Pif1. These data impact our understanding of Pif1 helicase evolution and the roles of these enzymes in the maintenance of genome integrity.


2006 ◽  
Vol 399 (3) ◽  
pp. 435-444 ◽  
Author(s):  
Mark A. Wells ◽  
Graham S. Jackson ◽  
Samantha Jones ◽  
Laszlo L. P. Hosszu ◽  
C. Jeremy Craven ◽  
...  

It has been shown previously that the unfolded N-terminal domain of the prion protein can bind up to six Cu2+ ions in vitro. This domain contains four tandem repeats of the octapeptide sequence PHGGGWGQ, which, alongside the two histidine residues at positions 96 and 111, contribute to its Cu2+ binding properties. At the maximum metal-ion occupancy each Cu2+ is co-ordinated by a single imidazole and deprotonated backbone amide groups. However two recent studies of peptides representing the octapeptide repeat region of the protein have shown, that at low Cu2+ availability, an alternative mode of co-ordination occurs where the metal ion is bound by multiple histidine imidazole groups. Both modes of binding are readily populated at pH 7.4, while mild acidification to pH 5.5 selects in favour of the low occupancy, multiple imidazole binding mode. We have used NMR to resolve how Cu2+ binds to the full-length prion protein under mildly acidic conditions where multiple histidine co-ordination is dominant. We show that at pH 5.5 the protein binds two Cu2+ ions, and that all six histidine residues of the unfolded N-terminal domain and the N-terminal amine act as ligands. These two sites are of sufficient affinity to be maintained in the presence of millimolar concentrations of competing exogenous histidine. A previously unknown interaction between the N-terminal domain and a site on the C-terminal domain becomes apparent when the protein is loaded with Cu2+. Furthermore, the data reveal that sub-stoichiometric quantities of Cu2+ will cause self-association of the prion protein in vitro, suggesting that Cu2+ may play a role in controlling oligomerization in vivo.


2019 ◽  
Author(s):  
David G. Nickens ◽  
Christopher W. Sausen ◽  
Matthew L. Bochman

AbstractPIF1 family helicases represent a highly conserved class of enzymes involved in multiple aspects of genome maintenance. Many PIF1 helicase are multi-domain proteins, but the functions of their non-helicase domains are poorly understood. Here, we characterized how the N-terminal domain (NTD) of theSaccharomyces cerevisiaePif1 helicase affects its functions bothin vivoandin vitro. Removal of the Pif1 NTD alleviated the toxicity associated with Pif1 over-expression in yeast. Biochemically, the N-terminally truncated Pif1 (Pif1ΔN) retainedin vitroDNA binding, DNA unwinding, and telomerase regulation activities, but these activities differed markedly from those displayed by full-length recombinant Pif1. However, Pif1ΔN was still able to synergize with the Hrq1 helicase to inhibit telomerase activityin vitro, similar to full-length Pif1. These data impact our understanding of PIF1 helicase evolution and the roles of these enzymes in the maintenance of genome integrity.


Sign in / Sign up

Export Citation Format

Share Document