scholarly journals A reassessment of copper(II) binding in the full-length prion protein

2006 ◽  
Vol 399 (3) ◽  
pp. 435-444 ◽  
Author(s):  
Mark A. Wells ◽  
Graham S. Jackson ◽  
Samantha Jones ◽  
Laszlo L. P. Hosszu ◽  
C. Jeremy Craven ◽  
...  

It has been shown previously that the unfolded N-terminal domain of the prion protein can bind up to six Cu2+ ions in vitro. This domain contains four tandem repeats of the octapeptide sequence PHGGGWGQ, which, alongside the two histidine residues at positions 96 and 111, contribute to its Cu2+ binding properties. At the maximum metal-ion occupancy each Cu2+ is co-ordinated by a single imidazole and deprotonated backbone amide groups. However two recent studies of peptides representing the octapeptide repeat region of the protein have shown, that at low Cu2+ availability, an alternative mode of co-ordination occurs where the metal ion is bound by multiple histidine imidazole groups. Both modes of binding are readily populated at pH 7.4, while mild acidification to pH 5.5 selects in favour of the low occupancy, multiple imidazole binding mode. We have used NMR to resolve how Cu2+ binds to the full-length prion protein under mildly acidic conditions where multiple histidine co-ordination is dominant. We show that at pH 5.5 the protein binds two Cu2+ ions, and that all six histidine residues of the unfolded N-terminal domain and the N-terminal amine act as ligands. These two sites are of sufficient affinity to be maintained in the presence of millimolar concentrations of competing exogenous histidine. A previously unknown interaction between the N-terminal domain and a site on the C-terminal domain becomes apparent when the protein is loaded with Cu2+. Furthermore, the data reveal that sub-stoichiometric quantities of Cu2+ will cause self-association of the prion protein in vitro, suggesting that Cu2+ may play a role in controlling oligomerization in vivo.

Genes ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 411 ◽  
Author(s):  
Nickens ◽  
Sausen ◽  
Bochman

: Pif1 family helicases represent a highly conserved class of enzymes involved in multiple aspects of genome maintenance. Many Pif1 helicases are multi-domain proteins, but the functions of their non-helicase domains are poorly understood. Here, we characterized how the N-terminal domain (NTD) of the Saccharomyces cerevisiae Pif1 helicase affects its functions both in vivo and in vitro. Removal of the Pif1 NTD alleviated the toxicity associated with Pif1 overexpression in yeast. Biochemically, the N-terminally truncated Pif1 (Pif1ΔN) retained in vitro DNA binding, DNA unwinding, and telomerase regulation activities, but these activities differed markedly from those displayed by full-length recombinant Pif1. However, Pif1ΔN was still able to synergize with the Hrq1 helicase to inhibit telomerase activity in vitro, similar to full-length Pif1. These data impact our understanding of Pif1 helicase evolution and the roles of these enzymes in the maintenance of genome integrity.


Endocrinology ◽  
2006 ◽  
Vol 147 (4) ◽  
pp. 1621-1631 ◽  
Author(s):  
John W. M. Creemers ◽  
Lynn E. Pritchard ◽  
Amy Gyte ◽  
Philippe Le Rouzic ◽  
Sandra Meulemans ◽  
...  

Agouti-related protein (AGRP) plays a key role in energy homeostasis. The carboxyl-terminal domain of AGRP acts as an endogenous antagonist of the melanocortin-4 receptor (MC4-R). It has been suggested that the amino-terminal domain of AGRP binds to syndecan-3, thereby modulating the effects of carboxyl-terminal AGRP at the MC4-R. This model assumes that AGRP is secreted as a full-length peptide. In this study we found that AGRP is processed intracellularly after Arg79-Glu80-Pro81-Arg82. The processing site suggests cleavage by proprotein convertases (PCs). RNA interference and overexpression experiments showed that PC1/3 is primarily responsible for cleavage in vitro, although both PC2 and PC5/6A can also process AGRP. Dual in situ hybridization demonstrated that PC1/3 is expressed in AGRP neurons in the rat hypothalamus. Moreover, hypothalamic extracts from PC1-null mice contained 3.3-fold more unprocessed full-length AGRP, compared with wild-type mice, based on combined HPLC and RIA analysis, demonstrating that PC1/3 plays a role in AGRP cleavage in vivo. We also found that AGRP83–132 is more potent an antagonist than full-length AGRP, based on cAMP reporter assays, suggesting that posttranslational cleavage is required to potentiate the effect of AGRP at the MC4-R. Because AGRP is cleaved into distinct amino-terminal and carboxyl-terminal peptides, we tested whether amino-terminal peptides modulate food intake. However, intracerebroventricular injection of rat AGRP25–47 and AGRP50–80 had no effect on body weight, food intake, or core body temperature. Because AGRP is cleaved before secretion, syndecan-3 must influence food intake independently of the MC4-R.


2011 ◽  
Vol 392 (5) ◽  
Author(s):  
Jan Stöhr ◽  
Kerstin Elfrink ◽  
Nicole Weinmann ◽  
Holger Wille ◽  
Dieter Willbold ◽  
...  

AbstractThe conversion of the cellular isoform of the prion protein (PrPC) into the pathologic isoform (PrPSc) is the key event in prion diseases. To study the conversion process, anin vitrosystem based on varying the concentration of low amounts of sodium dodecyl sulfate (SDS) has been employed. In the present study, the conversion of full-length PrPCisolated from Chinese hamster ovary cells (CHO-PrPC) was examined. CHO-PrPCharbors native, posttranslational modifications, including the GPI anchor and two N-linked glyco-sylation sites. The properties of CHO-PrPCwere compared with those of full-length and N-terminally truncated recombinant PrP. As shown earlier with recombinant PrP (recPrP90-231), transition from a soluble α-helical state as known for native PrPCinto an aggregated, β-sheet-rich PrPSc-like state could be induced by dilution of SDS. The aggregated state is partially proteinase K (PK)-resistant, exhibiting a cleavage site similar to that found with PrPSc. Compared to recPrP (90-231), fibril formation with CHO-PrPCrequires lower SDS concentrations (0.0075%), and can be drastically accelerated by seeding with PrPScpurified from brain homogenates of terminally sick hamsters. Our results show that recPrP 90-231 and CHO-PrPC behave qualitatively similar but quantitatively different. Thein vivosituation can be simulated closer with CHO-PrPCbecause the specific PK cleave site could be shown and the seed-assisted fibrillization was much more efficient.


1997 ◽  
Vol 8 (1) ◽  
pp. 33-46 ◽  
Author(s):  
N L Schlaich ◽  
M Häner ◽  
A Lustig ◽  
U Aebi ◽  
E C Hurt

The yeast nucleoporins Nsp1p, Nup49p, and Nup57p form a complex at the nuclear pores which is involved in nucleocytoplasmic transport. To investigate the molecular basis underlying complex formation, recombinant full-length Nup49p and Nup57p and the carboxyl-terminal domain of Nsp1p, which lacks the FXFG repeat domain, were expressed in Escherichia coli. When the three purified proteins were mixed together, they spontaneously associated to form a 150-kDa complex of 1:1:1 stoichiometry. In this trimeric complex, Nup57p fulfills the role of an organizing center, to which Nup49p and Nsp1p individually bind. For this interaction to occur, only two heptad repeat regions of the Nsp1p carboxyl-terminal domain are required, each region being about 50 amino acids in length. Finally, the reconstituted complex has the capability to bind to full-length Nic96p but not to mutant forms which also do not interact in vivo. When added to permeabilized yeast cells, the complex associates with the nuclear envelope and the nuclear pores. We conclude that Nsp1p, Nup49p, and Nup57p can reconstitute a complex in vitro which is competent for further assembly with other components of nuclear pores.


1999 ◽  
Vol 342 (3) ◽  
pp. 605-613 ◽  
Author(s):  
Debbie B. BRIMACOMBE ◽  
Alan D. BENNETT ◽  
Fred S. WUSTEMAN ◽  
Andrew C. GILL ◽  
Janine C. DANN ◽  
...  

Certain polysulphated polyanions have been shown to have prophylactic effects on the progression of transmissible spongiform encephalopathy disease, presumably because they bind to prion protein (PrP). Until now, the difficulty of obtaining large quantities of native PrP has precluded detailed studies of these interactions. We have over-expressed murine recombinant PrP (recPrP), lacking its glycophosphoinositol membrane anchor, in modified mammalian cells. Milligram quantities of secreted, soluble and partially glycosylated protein were purified under non-denaturing conditions and the identities of mature-length aglycosyl recPrP and two cleavage fragments were determined by electrospray MS. Binding was assessed by surface plasmon resonance techniques using both direct and competitive ligand-binding approaches. recPrP binding to immobilized polyanions was enhanced by divalent metal ions. Polyanion binding was strong and showed complex association and dissociation kinetics that were consistent with ligand-directed recPrP aggregation. The differences in the binding strengths of recPrP to pentosan polysulphate and to other sulphated polyanions were found to parallel their in vivo anti-scrapie and in vitro anti-scrapie-specific PrP formation potencies. When recPrP was immobilized by capture on metal-ion chelates it was found, contrary to expectation, that the addition of polyanions promoted the dissociation of the protein.


2019 ◽  
Author(s):  
David G. Nickens ◽  
Christopher W. Sausen ◽  
Matthew L. Bochman

AbstractPIF1 family helicases represent a highly conserved class of enzymes involved in multiple aspects of genome maintenance. Many PIF1 helicase are multi-domain proteins, but the functions of their non-helicase domains are poorly understood. Here, we characterized how the N-terminal domain (NTD) of theSaccharomyces cerevisiaePif1 helicase affects its functions bothin vivoandin vitro. Removal of the Pif1 NTD alleviated the toxicity associated with Pif1 over-expression in yeast. Biochemically, the N-terminally truncated Pif1 (Pif1ΔN) retainedin vitroDNA binding, DNA unwinding, and telomerase regulation activities, but these activities differed markedly from those displayed by full-length recombinant Pif1. However, Pif1ΔN was still able to synergize with the Hrq1 helicase to inhibit telomerase activityin vitro, similar to full-length Pif1. These data impact our understanding of PIF1 helicase evolution and the roles of these enzymes in the maintenance of genome integrity.


2006 ◽  
Vol 400 (3) ◽  
pp. 501-510 ◽  
Author(s):  
Mark A. Wells ◽  
Clare Jelinska ◽  
Laszlo L. P. Hosszu ◽  
C. Jeremy Craven ◽  
Anthony R. Clarke ◽  
...  

Although the physiological function of the prion protein remains unknown, in vitro experiments suggest that the protein may bind copper (II) ions and play a role in copper transport or homoeostasis in vivo. The unstructured N-terminal region of the prion protein has been shown to bind up to six copper (II) ions, with each of these ions co-ordinated by a single histidine imidazole and nearby backbone amide nitrogen atoms. Individually, these sites have micromolar affinities, which is weaker than would be expected of a true cuproprotein. In the present study, we show that with subsaturating levels of copper, different forms of co-ordination will occur, which have higher affinity. We have investigated the copper-binding properties of two peptides representing the known copper-binding regions of the prion protein: residues 57–91, which contains four tandem repeats of the octapeptide GGGWGQPH, and residues 91–115. Using equilibrium dialysis and spectroscopic methods, we unambiguously demonstrate that the mode of copper co-ordination in both of these peptides depends on the number of copper ions bound and that, at low copper occupancy, copper ions are co-ordinated with sub-micromolar affinity by multiple histidine imidazole groups. At pH 7.4, three different modes of copper co-ordination are accessible within the octapeptide repeats and two within the peptide comprising residues 91–115. The highest affinity copper (II)-binding modes cause self-association of both peptides, suggesting a role for copper (II) in controlling prion protein self-association in vivo.


Blood ◽  
2004 ◽  
Vol 103 (4) ◽  
pp. 1356-1363 ◽  
Author(s):  
Barbara P. Schick ◽  
David Maslow ◽  
Adrianna Moshinski ◽  
James D. San Antonio

Abstract Patients given unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH) for prophylaxis or treatment of thrombosis sometimes suffer serious bleeding. We showed previously that peptides containing 3 or more tandem repeats of heparin-binding consensus sequences have high affinity for LMWH and neutralize LMWH (enoxaparin) in vivo in rats and in vitro in citrate. We have now modified the (ARKKAAKA)n tandem repeat peptides by cyclization or by inclusion of hydrophobic tails or cysteines to promote multimerization. These peptides exhibit high-affinity binding to LMWH (dissociation constant [Kd], ≈ 50 nM), similar potencies in neutralizing anti–Factor Xa activity of UFH and enoxaparin added to normal plasma in vitro, and efficacy equivalent to or greater than protamine. Peptide (ARKKAAKA)3VLVLVLVL was most effective in all plasmas from enoxaparin-treated patients, and was 4- to 20-fold more effective than protamine. Several other peptide structures were effective in some patients' plasmas. All high-affinity peptides reversed inhibition of thrombin-induced clot formation by UFH. These peptides (1 mg/300 g rat) neutralized 1 U/mL anti–Factor Xa activity of enoxaparin in rats within 1 to 2 minutes. Direct blood pressure and heart rate measurements showed little or no hemodynamic effect. These heparin-binding peptides, singly or in combination, are potential candidates for clinical reversal of UFH and LMWH in humans.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 207
Author(s):  
Diane L. Ritchie ◽  
Marcelo A. Barria

The accumulation and propagation in the brain of misfolded proteins is a pathological hallmark shared by many neurodegenerative diseases such as Alzheimer’s disease (Aβ and tau), Parkinson’s disease (α-synuclein), and prion disease (prion protein). Currently, there is no epidemiological evidence to suggest that neurodegenerative disorders are infectious, apart from prion diseases. However, there is an increasing body of evidence from experimental models to suggest that other pathogenic proteins such as Aβ and tau can propagate in vivo and in vitro in a prion-like mechanism, inducing the formation of misfolded protein aggregates such as amyloid plaques and neurofibrillary tangles. Such similarities have raised concerns that misfolded proteins, other than the prion protein, could potentially transmit from person-to-person as rare events after lengthy incubation periods. Such concerns have been heightened following a number of recent reports of the possible inadvertent transmission of Aβ pathology via medical and surgical procedures. This review will provide a historical perspective on the unique transmissible nature of prion diseases, examining their impact on public health and the ongoing concerns raised by this rare group of disorders. Additionally, this review will provide an insight into current evidence supporting the potential transmissibility of other pathogenic proteins associated with more common neurodegenerative disorders and the potential implications for public health.


1999 ◽  
Vol 147 (6) ◽  
pp. 1275-1286 ◽  
Author(s):  
Conrad L. Leung ◽  
Dongming Sun ◽  
Min Zheng ◽  
David R. Knowles ◽  
Ronald K.H. Liem

We cloned and characterized a full-length cDNA of mouse actin cross-linking family 7 (mACF7) by sequential rapid amplification of cDNA ends–PCR. The completed mACF7 cDNA is 17 kb and codes for a 608-kD protein. The closest relative of mACF7 is the Drosophila protein Kakapo, which shares similar architecture with mACF7. mACF7 contains a putative actin-binding domain and a plakin-like domain that are highly homologous to dystonin (BPAG1-n) at its NH2 terminus. However, unlike dystonin, mACF7 does not contain a coiled–coil rod domain; instead, the rod domain of mACF7 is made up of 23 dystrophin-like spectrin repeats. At its COOH terminus, mACF7 contains two putative EF-hand calcium-binding motifs and a segment homologous to the growth arrest–specific protein, Gas2. In this paper, we demonstrate that the NH2-terminal actin-binding domain of mACF7 is functional both in vivo and in vitro. More importantly, we found that the COOH-terminal domain of mACF7 interacts with and stabilizes microtubules. In transfected cells full-length mACF7 can associate not only with actin but also with microtubules. Hence, we suggest a modified name: MACF (microtubule actin cross-linking factor). The properties of MACF are consistent with the observation that mutations in kakapo cause disorganization of microtubules in epidermal muscle attachment cells and some sensory neurons.


Sign in / Sign up

Export Citation Format

Share Document