telomerase regulation
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 12)

H-INDEX

19
(FIVE YEARS 3)

BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Satyaprakash Pandey ◽  
Mona Hajikazemi ◽  
Theresa Zacheja ◽  
Stephanie Schalbetter ◽  
Jonathan Baxter ◽  
...  

Abstract Background The main function of telomerase is at the telomeres but under adverse conditions telomerase can bind to internal regions causing deleterious effects as observed in cancer cells. Results By mapping the global occupancy of the catalytic subunit of telomerase (Est2) in the budding yeast Saccharomyces cerevisiae, we reveal that it binds to multiple guanine-rich genomic loci, which we termed “non-telomeric binding sites” (NTBS). We characterize Est2 binding to NTBS. Contrary to telomeres, Est2 binds to NTBS in G1 and G2 phase independently of Est1 and Est3. The absence of Est1 and Est3 renders telomerase inactive at NTBS. However, upon global DNA damage, Est1 and Est3 join Est2 at NTBS and telomere addition can be observed indicating that Est2 occupancy marks NTBS regions as particular risks for genome stability. Conclusions Our results provide a novel model of telomerase regulation in the cell cycle using internal regions as “parking spots” of Est2 but marking them as hotspots for telomere addition.


Author(s):  
Fatma Dogan ◽  
Nicholas R. Forsyth

The epigenetic nature of telomeres is still controversial and different human cell lines might show diverse histone marks at telomeres. Epigenetic modifications regulate telomere length and telomerase activity that influence telomere structure and maintenance. Telomerase is responsible for telomere elongation and maintenance and is minimally composed of the catalytic protein component, telomerase reverse transcriptase (TERT) and template forming RNA component, telomerase RNA (TERC). TERT promoter mutations may underpin some telomerase activation but regulation of the gene is not completely understood due to the complex interplay of epigenetic, transcriptional, and posttranscriptional modifications. Pluripotent stem cells (PSCs) can maintain an indefinite, immortal, proliferation potential through their endogenous telomerase activity, maintenance of telomere length, and a bypass of replicative senescence in vitro. Differentiation of PSCs results in silencing of the TERT gene and an overall reversion to a mortal, somatic cell phenotype. The precise mechanisms for this controlled transcriptional silencing are complex. Promoter methylation has been suggested to be associated with epigenetic control of telomerase regulation which presents an important prospect for understanding cancer and stem cell biology. Control of down-regulation of telomerase during differentiation of PSCs provides a convenient model for the study of its endogenous regulation. Telomerase reactivation has the potential to reverse tissue degeneration, drive repair, and form a component of future tissue engineering strategies. Taken together it becomes clear that PSCs provide a unique system to understand telomerase regulation fully and drive this knowledge forward into aging and therapeutic application.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3145
Author(s):  
Karolin Walter ◽  
Eva Rodriguez-Aznar ◽  
Monica S. Ventura Ferreira ◽  
Pierre-Olivier Frappart ◽  
Tabea Dittrich ◽  
...  

To assess the role of telomerase activity and telomere length in pancreatic CSCs we used different CSC enrichment methods (CD133, ALDH, sphere formation) in primary patient-derived pancreatic cancer cells. We show that CSCs have higher telomerase activity and longer telomeres than bulk tumor cells. Inhibition of telomerase activity, using genetic knockdown or pharmacological inhibitor (BIBR1532), resulted in CSC marker depletion, abrogation of sphere formation in vitro and reduced tumorigenicity in vivo. Furthermore, we identify a positive feedback loop between stemness factors (NANOG, OCT3/4, SOX2, KLF4) and telomerase, which is essential for the self-renewal of CSCs. Disruption of the balance between telomerase activity and stemness factors eliminates CSCs via induction of DNA damage and apoptosis in primary patient-derived pancreatic cancer samples, opening future perspectives to avoid CSC-driven tumor relapse. In the present study, we demonstrate that telomerase regulation is critical for the “stemness” maintenance in pancreatic CSCs and examine the effects of telomerase inhibition as a potential treatment option of pancreatic cancer. This may significantly promote our understanding of PDAC tumor biology and may result in improved treatment for pancreatic cancer patients.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1213
Author(s):  
Fatma Dogan ◽  
Nicholas R. Forsyth

Telomerase was first described by Greider and Blackburn in 1984, a discovery ultimately recognized by the Nobel Prize committee in 2009. The three decades following on from its discovery have been accompanied by an increased understanding of the fundamental mechanisms of telomerase activity, and its role in telomere biology. Telomerase has a clearly defined role in telomere length maintenance and an established influence on DNA replication, differentiation, survival, development, apoptosis, tumorigenesis, and a further role in therapeutic resistance in human stem and cancer cells including those of breast and cervical origin. TERT encodes the catalytic subunit and rate-limiting factor for telomerase enzyme activity. The mechanisms of activation or silencing of TERT remain open to debate across somatic, cancer, and stem cells. Promoter mutations upstream of TERT may promote dysregulated telomerase activation in tumour cells but additional factors including epigenetic, transcriptional and posttranscriptional modifications also have a role to play. Previous systematic analysis indicated methylation and mutation of the TERT promoter in 53% and 31%, respectively, of TERT expressing cancer cell lines supporting the concept of a key role for epigenetic alteration associated with TERT dysregulation and cellular transformation. Epigenetic regulators including DNA methylation, histone modification, and non-coding RNAs are now emerging as drivers in the regulation of telomeres and telomerase activity. Epigenetic regulation may be responsible for reversible silencing of TERT in several biological processes including development and differentiation, and increased TERT expression in cancers. Understanding the epigenetic mechanisms behind telomerase regulation holds important prospects for cancer treatment, diagnosis and prognosis. This review will focus on the role of epigenetics in telomerase regulation.


2020 ◽  
Author(s):  
Karolin Walter ◽  
Eva Rodriguez-Aznar ◽  
Monica S. Ventura Ferreira ◽  
Pierre-Olivier Frappart ◽  
Tabea Dittrich ◽  
...  

AbstractTo date, it is still unclear how cancer stem cells (CSCs) regulate their stemness properties, and to what extent they share common features with normal stem cells. Telomerase regulation is a key factor in stem cell maintenance. In this study, we investigate how telomerase regulation affects cancer stem cell biology in pancreatic ductal adenocarcinoma (PDAC), and delineate the mechanisms by which telomerase activity and CSC properties are linked. Using primary patient-derived pancreatic cancer cells, we show that CSCs have higher telomerase activity and longer telomeres than bulk tumor cells. Inhibition of telomerase activity, using genetic TERT-knockdown or pharmacological inhibitor (BIBR1532) resulted in CSC marker depletion in vitro, and reduced tumorigenicity in vivo. Furthermore, we identify a positive feedback loop between stemness factors (KLF4, SOX2, OCT3/4, NANOG) and telomerase, which is essential for the self-renewal of pancreatic CSCs. Disruption the balance between telomerase activity and stemness factors, eliminates CSCs via induction of DNA damage and apoptosis, opening future perspectives to avoid CSC driven therapy resistance and tumor relapse in PDAC patients.


2020 ◽  
Vol 7 (6) ◽  
pp. 1818537
Author(s):  
Pascal Chartrand ◽  
Agnel Sfeir

2020 ◽  
Author(s):  
Alex Penev ◽  
Andrew Bazley ◽  
Michael Shen ◽  
Jef D. Boeke ◽  
Sharon A. Savage ◽  
...  

High telomerase activity is restricted to the blastocyst stage of embryonic development when telomere length is reset, and is characteristic of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). However, the pathways involved in telomerase regulation as a function of pluripotency remain unknown. To explore hTERT transcriptional control, we compare genome-wide interactions (4C-seq) and chromatin accessibility (ATAC-seq) between human ESCs and epithelial cells and identify several putative hTERT cis-regulatory elements. CRISPR/Cas9-mediated deletion of candidate elements in ESCs reduces the levels of hTERT mRNA but does not abolish telomerase expression, thus implicating post-transcriptional processes in telomerase regulation. In agreement with this hypothesis, we find an hTERT splice variant lacking exon-2 and prone to degradation, to be enriched in differentiated cells but absent from ESCs. In addition, we show that forced retention of exon-2 prevents telomerase silencing during differentiation. Lastly, we highlight a role for the splicing co-factor SON in hTERT exon-2 inclusion and identify a SON mutation in a Dyskeratosis congenita patient with short telomeres and decreased telomerase activity. Altogether, our data uncover a novel alternative splice switch that is critical for telomerase activity during development.


Cell Reports ◽  
2019 ◽  
Vol 27 (12) ◽  
pp. 3511-3521.e7 ◽  
Author(s):  
Sherilyn Grill ◽  
Kamlesh Bisht ◽  
Valerie M. Tesmer ◽  
Adrienne Niederriter Shami ◽  
Saher S. Hammoud ◽  
...  

Genes ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 411 ◽  
Author(s):  
Nickens ◽  
Sausen ◽  
Bochman

: Pif1 family helicases represent a highly conserved class of enzymes involved in multiple aspects of genome maintenance. Many Pif1 helicases are multi-domain proteins, but the functions of their non-helicase domains are poorly understood. Here, we characterized how the N-terminal domain (NTD) of the Saccharomyces cerevisiae Pif1 helicase affects its functions both in vivo and in vitro. Removal of the Pif1 NTD alleviated the toxicity associated with Pif1 overexpression in yeast. Biochemically, the N-terminally truncated Pif1 (Pif1ΔN) retained in vitro DNA binding, DNA unwinding, and telomerase regulation activities, but these activities differed markedly from those displayed by full-length recombinant Pif1. However, Pif1ΔN was still able to synergize with the Hrq1 helicase to inhibit telomerase activity in vitro, similar to full-length Pif1. These data impact our understanding of Pif1 helicase evolution and the roles of these enzymes in the maintenance of genome integrity.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 666 ◽  
Author(s):  
Andrew T. Ludlow ◽  
Aaron L. Slusher ◽  
Mohammed E. Sayed

The reactivation of telomerase in cancer cells remains incompletely understood. The catalytic component of telomerase, hTERT, is thought to be the limiting component in cancer cells for the formation of active enzymes. hTERT gene expression is regulated at several levels including chromatin, DNA methylation, transcription factors, and RNA processing events. Of these regulatory events, RNA processing has received little attention until recently. RNA processing and alternative splicing regulation have been explored to understand how hTERT is regulated in cancer cells. The cis- and trans-acting factors that regulate the alternative splicing choice of hTERT in the reverse transcriptase domain have been investigated. Further, it was discovered that the splicing factors that promote the production of full-length hTERT were also involved in cancer cell growth and survival. The goals are to review telomerase regulation via alternative splicing and the function of hTERT splicing variants and to point out how bioinformatics approaches are leading the way in elucidating the networks that regulate hTERT splicing choice and ultimately cancer growth.


Sign in / Sign up

Export Citation Format

Share Document