scholarly journals Down-Regulation of Protease-activated Receptor-1 Is Regulated by Sorting Nexin 1

2002 ◽  
Vol 13 (6) ◽  
pp. 1965-1976 ◽  
Author(s):  
Yingjie Wang ◽  
Yixing Zhou ◽  
Katalin Szabo ◽  
Carol Renfrew Haft ◽  
JoAnn Trejo

Degradation or “down-regulation” of protease-activated receptor-1 (PAR1), a G protein-coupled receptor for thrombin, is critical for termination of receptor signaling. Toward understanding the molecular mechanisms by which activated PAR1 is internalized, sorted to lysosomes, and degraded, we investigated whether PAR1 interacted with sorting nexin 1 (SNX1). SNX1 is a membrane-associated protein that functions in lysosomal sorting of the epidermal growth factor receptor. In vitro biochemical binding assays revealed a specific interaction between a glutathione S-transferase fusion of SNX1 and PAR1. In HeLa cells, activated PAR1 colocalized with endogenous SNX1 and coimmunoprecipitated SNX1. SNX1 contains a phox homology domain predicted to bind phosphatidylinositol-3-phosphate and a C-terminal coiled-coil region. To assess SNX1 function, we examined the effects of SNX1 deletion mutants on PAR1 trafficking. Neither the N terminus nor phox homology domain of SNX1 affected PAR1 trafficking. By contrast, overexpression of SNX1 C-terminal domain markedly inhibited agonist-induced degradation of PAR1, whereas internalization remained virtually intact. Immunofluorescence microscopy studies revealed substantial PAR1 accumulation in an early endosome antigen-1-positive compartment in agonist-treated cells expressing SNX1 C terminus. By contrast, lysosome-associated membrane protein-1 distribution was unperturbed. Together, these findings strongly suggest a role for SNX1 in sorting of PAR1 from early endosomes to lysosomes. Moreover, this study provides the first example of a protein involved in lysosomal sorting of a G protein-coupled receptor in mammalian cells.

2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Li-Jie Men ◽  
Ji-Zhu Liu ◽  
Hai-Ying Chen ◽  
Li Zhang ◽  
Shuang-Feng Chen ◽  
...  

2001 ◽  
Vol 166 (3) ◽  
pp. 1635-1640 ◽  
Author(s):  
Maria Stella Lombardi ◽  
Annemieke Kavelaars ◽  
Pieter M. Cobelens ◽  
Reinhold E. Schmidt ◽  
Manfred Schedlowski ◽  
...  

2013 ◽  
Vol 23 (1) ◽  
pp. 52-59 ◽  
Author(s):  
Xin Ge ◽  
Ruixia Guo ◽  
Yuhuan Qiao ◽  
Yancai Zhang ◽  
Jia Lei ◽  
...  

ObjectiveThe goal of this study was to investigate the effect of G protein–coupled receptor 30 (GPR30) on the activation of PI3K/Akt pathway induced by E2 in endometrial cancer cells.Methods and materialsImmunohistochemistry was performed to determine the location and expression of GPR30, estrogen receptors (ERs), Akt, and phosphorylated Akt. We also investigated the expression of GPR30, ERs, and the level of phosphorylation of Akt induced by E2 in endometrial cancer cells, Ishikawa cells, and HEC-1A cells. We down-regulated the expression of GPR30 in endometrial cancer cell lines by transfection with shGPR30-pGFP-V-RS, a GPR30 antisense expression vector. The cells were then subjected to a proliferation assay. Immunoprecipitation assay was performed to determine whether GPR30 directly bind to PI3K. The stable transfected cells resuspension of 100 μL (5 × 106 cells) was injected subcutaneously into the right flank of athymic mice to perform xenograft tumor formation assays.ResultsE2 stimulated cell proliferation and induced GPR30 expression and PI3K/Akt pathway activation in endometrial cancer cells, Ishikawa cells, and HEC-1A cells, whereas the expression of ERs remained unchangeable. Down-regulation of GPR30 decreased the phosphorylation of Akt and reduced cell proliferation, and GPR30 did not bind to PI3K. Down-regulation of GPR30 significantly inhibited the tumor growth of HEC-1A cells in athymic nude mice.ConclusionsThese findings suggest that GPR30 mediates the nontranscriptional effect of estrogen on the activation of PI3K/Akt pathway in endometrial cancer cells.


2012 ◽  
Vol 23 (18) ◽  
pp. 3612-3623 ◽  
Author(s):  
Michael R. Dores ◽  
May M. Paing ◽  
Huilan Lin ◽  
William A. Montagne ◽  
Adriano Marchese ◽  
...  

The sorting of signaling receptors within the endocytic system is important for appropriate cellular responses. After activation, receptors are trafficked to early endosomes and either recycled or sorted to lysosomes and degraded. Most receptors trafficked to lysosomes are modified with ubiquitin and recruited into an endosomal subdomain enriched in hepatocyte growth factor–regulated tyrosine kinase substrate (HRS), a ubiquitin-binding component of the endosomal-sorting complex required for transport (ESCRT) machinery, and then sorted into intraluminal vesicles (ILVs) of multivesicular bodies (MVBs)/lysosomes. However, not all receptors use ubiquitin or the canonical ESCRT machinery to sort to MVBs/lysosomes. This is exemplified by protease-activated receptor-1 (PAR1), a G protein–coupled receptor for thrombin, which sorts to lysosomes independent of ubiquitination and HRS. We recently showed that the adaptor protein ALIX binds to PAR1, recruits ESCRT-III, and mediates receptor sorting to ILVs of MVBs. However, the mechanism that initiates PAR1 sorting at the early endosome is not known. We now report that the adaptor protein complex-3 (AP-3) regulates PAR1 ubiquitin-independent sorting to MVBs through an ALIX-dependent pathway. AP-3 binds to a PAR1 cytoplasmic tail–localized tyrosine-based motif and mediates PAR1 lysosomal degradation independent of ubiquitination. Moreover, AP-3 facilitates PAR1 interaction with ALIX, suggesting that AP-3 functions before PAR1 engagement of ALIX and MVB/lysosomal sorting.


2015 ◽  
Vol 39 (4) ◽  
pp. 418-426 ◽  
Author(s):  
Xin Shao ◽  
Yong Liu ◽  
Hai Huang ◽  
Linyuan Zhuang ◽  
Tianping Luo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document