scholarly journals Specification of Actin Filament Function and Molecular Composition by Tropomyosin Isoforms

2003 ◽  
Vol 14 (3) ◽  
pp. 1002-1016 ◽  
Author(s):  
Nicole S. Bryce ◽  
Galina Schevzov ◽  
Vicki Ferguson ◽  
Justin M. Percival ◽  
Jim J.-C. Lin ◽  
...  

The specific functions of greater than 40 vertebrate nonmuscle tropomyosins (Tms) are poorly understood. In this article we have tested the ability of two Tm isoforms, TmBr3 and the human homologue of Tm5 (hTM5NM1), to regulate actin filament function. We found that these Tms can differentially alter actin filament organization, cell size, and shape. hTm5NM1was able to recruit myosin II into stress fibers, which resulted in decreased lamellipodia and cellular migration. In contrast, TmBr3 transfection induced lamellipodial formation, increased cellular migration, and reduced stress fibers. Based on coimmunoprecipitation and colocalization studies, TmBr3 appeared to be associated with actin-depolymerizing factor/cofilin (ADF)-bound actin filaments. Additionally, the Tms can specifically regulate the incorporation of other Tms into actin filaments, suggesting that selective dimerization may also be involved in the control of actin filament organization. We conclude that Tm isoforms can be used to specify the functional properties and molecular composition of actin filaments and that spatial segregation of isoforms may lead to localized specialization of actin filament function.

1997 ◽  
Vol 110 (15) ◽  
pp. 1693-1704 ◽  
Author(s):  
A.B. Verkhovsky ◽  
T.M. Svitkina ◽  
G.G. Borisy

The polarity of actin filaments is fundamental for the subcellular mechanics of actin-myosin interaction; however, little is known about how actin filaments are oriented with respect to myosin in non-muscle cells and how actin polarity organization is established and maintained. Here we approach these questions by investigating changes in the organization and polarity of actin relative to myosin II during actin filament translocation. Actin and myosin II reorganization was followed both kinetically, using microinjected fluorescent analogs of actin and myosin, and ultrastructurally, using myosin S1 decoration and immunogold labelling, in cultured fibroblasts that were induced to contract by treatment with cytochalasin D. We observed rapid (within 15 minutes) formation of ordered actin filament arrays: short tapered bundles and aster-like assemblies, in which filaments had uniform polarity with their barbed ends oriented toward the aggregate of myosin II at the base of a bundle or in the center of an aster. The resulting asters further interacted with each other and aggregated into bigger asters. The arrangement of actin in asters was in sharp contrast to the mixed polarity of actin filaments relative to myosin in non-treated cells. At the edge of the cell, actin filaments became oriented with their barbed ends toward the cell center; that is, the orientation was opposite to what was observed at the edge of nontreated cells. This rearrangement is indicative of relative translocation of actin and myosin II and of the ability of myosin II to sort actin filaments with respect to their polarity during translocation. The results suggest that the myosin II-actin system of non-muscle cells is organized as a dynamic network where actin filament arrangement is defined in the course of its interaction with myosin II.


2018 ◽  
Vol 29 (8) ◽  
pp. 911-922 ◽  
Author(s):  
Masahiro Kuragano ◽  
Taro Q. P. Uyeda ◽  
Keiju Kamijo ◽  
Yota Murakami ◽  
Masayuki Takahashi

Stress fibers (SFs) are contractile, force-generating bundled structures that can be classified into three subtypes, namely ventral SFs (vSFs), transverse arcs (TAs), and dorsal SFs. Nonmuscle myosin II (NMII) is the main component of SFs. This study examined the roles of the NMII isoforms NMIIA and NMIIB in the organization of each SF subtype in immortalized fibroblasts. Knockdown (KD) of NMIIA (a major isoform) resulted in loss of TAs from the lamella and caused the lamella to lose its flattened shape. Exogenous expression of NMIIB rescued this defect in TA formation. However, the TAs that formed on exogenous NMIIB expression in NMIIA-KD cells and the remaining TAs in NMIIB-KD cells, which mainly consisted of NMIIB and NMIIA, respectively, failed to rescue the defect in lamellar flattening. These results indicate that both isoforms are required for the proper function of TAs in lamellar flattening. KD of NMIIB resulted in loss of vSFs from the central region of the cell body, and this defect was not rescued by exogenous expression of NMIIA, indicating that NMIIA cannot replace the function of NMIIB in vSF formation. Moreover, we raised the possibility that actin filaments in vSFs are in a stretched conformation.


2017 ◽  
Vol 216 (9) ◽  
pp. 2657-2667 ◽  
Author(s):  
Ting Gang Chew ◽  
Junqi Huang ◽  
Saravanan Palani ◽  
Ruth Sommese ◽  
Anton Kamnev ◽  
...  

Cytokinesis in many eukaryotes involves a tension-generating actomyosin-based contractile ring. Many components of actomyosin rings turn over during contraction, although the significance of this turnover has remained enigmatic. Here, using Schizosaccharomyces japonicus, we investigate the role of turnover of actin and myosin II in its contraction. Actomyosin ring components self-organize into ∼1-µm-spaced clusters instead of undergoing full-ring contraction in the absence of continuous actin polymerization. This effect is reversed when actin filaments are stabilized. We tested the idea that the function of turnover is to ensure actin filament homeostasis in a synthetic system, in which we abolished turnover by fixing rings in cell ghosts with formaldehyde. We found that these rings contracted fully upon exogenous addition of a vertebrate myosin. We conclude that actin turnover is required to maintain actin filament homeostasis during ring contraction and that the requirement for turnover can be bypassed if homeostasis is achieved artificially.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Sari Tojkander ◽  
Gergana Gateva ◽  
Amjad Husain ◽  
Ramaswamy Krishnan ◽  
Pekka Lappalainen

Adhesion and morphogenesis of many non-muscle cells are guided by contractile actomyosin bundles called ventral stress fibers. While it is well established that stress fibers are mechanosensitive structures, physical mechanisms by which they assemble, align, and mature have remained elusive. Here we show that arcs, which serve as precursors for ventral stress fibers, undergo lateral fusion during their centripetal flow to form thick actomyosin bundles that apply tension to focal adhesions at their ends. Importantly, this myosin II-derived force inhibits vectorial actin polymerization at focal adhesions through AMPK-mediated phosphorylation of VASP, and thereby halts stress fiber elongation and ensures their proper contractility. Stress fiber maturation additionally requires ADF/cofilin-mediated disassembly of non-contractile stress fibers, whereas contractile fibers are protected from severing. Taken together, these data reveal that myosin-derived tension precisely controls both actin filament assembly and disassembly to ensure generation and proper alignment of contractile stress fibers in migrating cells.


2008 ◽  
Vol 19 (11) ◽  
pp. 5006-5018 ◽  
Author(s):  
Tom W. Anderson ◽  
Andrew N. Vaughan ◽  
Louise P. Cramer

In migrating fibroblasts actomyosin II bundles are graded polarity (GP) bundles, a distinct organization to stress fibers. GP bundles are important for powering cell migration, yet have an unknown mechanism of formation. Electron microscopy and the fate of photobleached marks show actin filaments undergoing retrograde flow in filopodia, and the lamellipodium are structurally and dynamically linked with stationary GP bundles within the lamella. An individual filopodium initially protrudes, but then becomes separated from the tip of the lamellipodium and seeds the formation of a new GP bundle within the lamella. In individual live cells expressing both GFP-myosin II and RFP-actin, myosin II puncta localize to the base of an individual filopodium an average 28 s before the filopodium seeds the formation of a new GP bundle. Associated myosin II is stationary with respect to the substratum in new GP bundles. Inhibition of myosin II motor activity in live cells blocks appearance of new GP bundles in the lamella, without inhibition of cell protrusion in the same timescale. We conclude retrograde F-actin flow and myosin II activity within the leading cell edge delivers F-actin to the lamella to seed the formation of new GP bundles.


2021 ◽  
Author(s):  
Peyman Obeidy ◽  
Tom Sobey ◽  
Philip R. Nicovich ◽  
Adelle C. F. Coster ◽  
Elvis Pandzic

Tropomyosins (Tpm) are rod-shaped proteins that interact head-to-tail to form a continuous polymer along both sides of most cellular actin filaments. Head-to-tail interaction between adjacent Tpm molecules and the formation of an overlap complex between them leads to the assembly of actin filaments with one type of Tpm isoform in time and space. Variations in the affinity of tropomyosin isoforms for different actin structures are proposed as a potential sorting mechanism. However, the detailed mechanisms of spatio-temporal sorting of Tpms remain elusive. In this study, we investigated the early intermediates during actin-tropomyosin filament assembly, using skeletal/cardiac Tpm isoform (Tpm1.1) and a cytoskeletal isoform (Tpm1.6) that differ only in the last 27 amino acids. We investigated how the muscle isoform Tpm1.1 and the cytoskeletal isoform Tpm1.6 nucleate domains on the actin filament and tested whether (1) recruitment is affected by the actin isoform (muscle vs cytoskeletal) and (2) whether there is specificity in recruiting the same isoform to a domain at these early stages. To address these questions, actin filaments were exposed to low concentrations of fluorescent tropomyosins in solution. The filaments were immobilized onto glass coverslips and the pattern of decoration was visualized by TIRF microscopy. We show that at the early assembly stage, tropomyosins formed multiple distinct fluorescent domains (here termed "cluster") on the actin filaments. An automated image analysis algorithm was developed and validated to identify clusters and estimate the number of tropomyosins in each cluster. The analysis showed that tropomyosin isoform sorting onto an actin filament is unlikely to be driven by a preference for nucleating on the corresponding muscle or cytoskeletal actin isoforms but rather is facilitated by a higher probability of incorporating the same tropomyosin isoforms into an early assembly intermediate. We showed that the 27 amino acids at the end of each tropomyosin seem to provide enough molecular information for attachment of the same tropomyosin isoforms adjacent to each other on an actin filament. This results in the formation of homogeneous clusters composed of the same isoform rather than clusters with mixed isoforms.


1994 ◽  
Vol 267 (3) ◽  
pp. C715-C722 ◽  
Author(s):  
S. A. McCormack ◽  
J. Y. Wang ◽  
L. R. Johnson

In earlier work we have shown that polyamine-deficient IEC-6 cells lose most of their ability to migrate. In this report we describe the effect of polyamine deficiency on the cytoskeleton of migrating IEC-6 cells. Cells were grown on cover slips for 4 days. One-third of the monolayer was removed, and the remainder was incubated for 6 h. The monolayers were fixed and stained with rhodamine phalloidin for actin filaments and by immunocytochemistry for tropomyosin. In control cells, actin filaments were found as stress fibers traversing the cell, in a thin actin cortex often visible on only one edge of the cell, and in fine fibers extending into the lamellipodia. Tropomyosin was found in the same distribution. A Western blot showed that tropomyosin was present as 35- and 37-kDa isoforms. In polyamine-deficient cells, actin stress fibers were less dense, whereas the actin cortex was greatly increased in density and lamellipodia were less extensive. Tropomyosin distribution was similar and included a 30-kDa isoform not seen previously. In spite of the obvious changes in the distribution of these cytoskeletal proteins, the concentrations of filamentous actin, beta-actin mRNA, and the higher molecular weight tropomyosin isoforms did not change. In all cases the addition of putrescine to polyamine-deficient cells prevented the changes described. We conclude that polyamines are essential for migration in this system because of their effects on the organization of cytoskeletal actin, tropomyosin, and perhaps other proteins as well.


2013 ◽  
Vol 200 (1) ◽  
pp. 9-19 ◽  
Author(s):  
Keith Burridge ◽  
Erika S. Wittchen

Stress fibers (SFs) are often the most prominent cytoskeletal structures in cells growing in tissue culture. Composed of actin filaments, myosin II, and many other proteins, SFs are force-generating and tension-bearing structures that respond to the surrounding physical environment. New work is shedding light on the mechanosensitive properties of SFs, including that these structures can respond to mechanical tension by rapid reinforcement and that there are mechanisms to repair strain-induced damage. Although SFs are superficially similar in organization to the sarcomeres of striated muscle, there are intriguing differences in their organization and behavior, indicating that much still needs to be learned about these structures.


2014 ◽  
Vol 13 (5) ◽  
pp. 625-634 ◽  
Author(s):  
Paul Griffin ◽  
Ruth Furukawa ◽  
Cleveland Piggott ◽  
Andrew Maselli ◽  
Marcus Fechheimer

ABSTRACT Hirano bodies are paracrystalline F-actin-rich structures associated with diverse conditions, including neurodegeneration and aging. Generation of model Hirano bodies using altered forms of Dictyostelium 34-kDa actin-bundling protein allows studies of their physiological function and mechanism of formation. We describe a novel 34-kDa protein mutant, E60K, with a point mutation within the inhibitory domain of the 34-kDa protein. Expression of E60K in Dictyostelium induces the formation of model Hirano bodies. The E60K protein has activated actin binding and is calcium regulated, unlike other forms of the 34-kDa protein that induce Hirano bodies and that have activated actin binding but lack calcium regulation. Actin filaments in the presence of E60K in vitro show enhanced resistance to disassembly induced by latrunculin B. Actin filaments in model Hirano bodies are also protected from latrunculin-induced depolymerization. We used nocodazole and blebbistatin to probe the role of the microtubules and myosin II, respectively, in the formation of model Hirano bodies. In the presence of these inhibitors, model Hirano bodies can form but are smaller than controls at early times of formation. The ultrastructure of model Hirano bodies did not reveal any major difference in structure and organization in the presence of inhibitors. In summary, these results support the conclusion that formation of model Hirano bodies is promoted by gain-of-function actin filament bundling, which enhances actin filament stabilization. Microtubules and myosin II contribute to but are not required for formation of model Hirano bodies.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Aidan M Fenix ◽  
Abigail C Neininger ◽  
Nilay Taneja ◽  
Karren Hyde ◽  
Mike R Visetsouk ◽  
...  

The sarcomere is the contractile unit within cardiomyocytes driving heart muscle contraction. We sought to test the mechanisms regulating actin and myosin filament assembly during sarcomere formation. Therefore, we developed an assay using human cardiomyocytes to monitor sarcomere assembly. We report a population of muscle stress fibers, similar to actin arcs in non-muscle cells, which are essential sarcomere precursors. We show sarcomeric actin filaments arise directly from muscle stress fibers. This requires formins (e.g., FHOD3), non-muscle myosin IIA and non-muscle myosin IIB. Furthermore, we show short cardiac myosin II filaments grow to form ~1.5 μm long filaments that then ‘stitch’ together to form the stack of filaments at the core of the sarcomere (i.e., the A-band). A-band assembly is dependent on the proper organization of actin filaments and, as such, is also dependent on FHOD3 and myosin IIB. We use this experimental paradigm to present evidence for a unifying model of sarcomere assembly.


Sign in / Sign up

Export Citation Format

Share Document