sarcomere assembly
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 18)

H-INDEX

26
(FIVE YEARS 3)

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3515
Author(s):  
Ahmed Shamloul ◽  
Gustav Steinemann ◽  
Kerrin Roos ◽  
Celine Huajia Liem ◽  
Jonathan Bernd ◽  
...  

The lysine methyltransferase Smyd1 with its characteristic catalytic SET-domain is highly enriched in the embryonic heart and skeletal muscles, participating in cardiomyogenesis, sarcomere assembly and chromatin remodeling. Recently, significant Smyd1 levels were discovered in endothelial cells (ECs) that responded to inflammatory cytokines. Based on these biochemical properties, we hypothesized that Smyd1 is involved in inflammation-triggered signaling in ECs and therefore, investigated its role within the LPS-induced signaling cascade. Human endothelial cells (HUVECs and EA.hy926 cells) responded to LPS stimulation with higher intrinsic Smyd1 expression. By transfection with expression vectors containing gene inserts encoding either intact Smyd1, a catalytically inactive Smyd1-mutant or Smyd1-specific siRNAs, we show that Smyd1 contributes to LPS-triggered expression and secretion of IL-6 in EA.hy926 cells. Further molecular analysis revealed this process to be based on two signaling pathways: Smyd1 increased the activity of NF-κB and promoted the trimethylation of lysine-4 of histone-3 (H3K4me3) within the IL-6 promoter, as shown by ChIP-RT-qPCR combined with IL-6-promoter-driven luciferase reporter gene assays. In summary, our experimental analysis revealed that LPS-binding to ECs leads to the up-regulation of Smyd1 expression to transduce the signal for IL-6 up-regulation via activation of the established NF-κB pathway as well as via epigenetic trimethylation of H3K4.


Author(s):  
Serena Huei-An Lu ◽  
Kang-Zheng Lee ◽  
Paul Wei-Che Hsu ◽  
Liang-Yu Su ◽  
Yu-Chen Yeh ◽  
...  

Background: Mutations in genes encoding sarcomeric proteins lead to failures in sarcomere assembly, the building blocks of contracting muscles, resulting in cardiomyopathies that are a leading cause of morbidity and mortality worldwide. Splicing variants of sarcomeric proteins are crucial at different stages of myofibrillogenesis, accounting for sarcomeric structural integrity. RNA-binding motif protein 24 (RBM24) is known as a tissue-specific splicing regulator that plays an essential role in cardiogenesis. However, it had been unclear if the developmental stage-specific alternative splicing facilitated by RBM24 contributes to sarcomere assembly and cardiogenesis. Our aim isto study the molecular mechanism by which RBM24 regulates cardiogenesis and sarcomere assembly in a temporal-dependent manner. Methods: We ablated RBM24 from human embryonic stem cells (hESCs) using CRISPR/Cas9 techniques. Results: Although RBM24 -/- hESCs still differentiated into sarcomere-hosting cardiomyocytes, they exhibited disrupted sarcomeric structures with punctate Z-lines due to impaired myosin replacement during early myofibrillogenesis. Transcriptomics revealed >4000 genes regulated by RBM24. Among them, core myofibrillogenesis proteins (e.g. ACTN2, TTN, and MYH10) were misspliced. Consequently, MYH6 cannot replace non-muscle myosin MYH10, leading to myofibrillogenesis arrest at the early premyofibril stage and causing disrupted sarcomeres. Intriguingly, we found that the actin-binding domain (ABD; encoded by exon 6) of the Z-line anchor protein ACTN2 is predominantly excluded from early cardiac differentiation, whereas it is consistently included in human adult heart. CRISPR/Cas9-mediated deletion of exon 6 from ACTN2 in hESCs, as well as forced expression of full-length ACTN2 in RBM24 -/- hESCs, further corroborated that inclusion of exon 6 is critical for sarcomere assembly. Overall, we have demonstrated that RBM24-facilitated inclusion of exon 6 in ACTN2 at distinct stages of cardiac differentiation is evolutionarily conserved and crucial to sarcomere assembly and integrity. Conclusions: RBM24 acts as a master regulator to modulate the temporal dynamics of core myofibrillogenesis genes and thereby orchestrates sarcomere organization.


2021 ◽  
Author(s):  
Qiyan Mao ◽  
Achyuth Acharya ◽  
Alejandra Rodriguez-delaRosa ◽  
Fabio Marchiano ◽  
Benoit Dehapiot ◽  
...  

Human muscle is a hierarchically organised tissue with its contractile cells called myofibers packed into large myofiber bundles. Each myofiber contains periodic myofibrils built by hundreds of contractile sarcomeres that generate large mechanical forces. To better understand the mechanisms that coordinate human muscle morphogenesis from tissue to molecular scales, we adopted a simple in vitro system using induced pluripotent stem cell-derived human myogenic precursors. When grown on an unrestricted two-dimensional substrate, developing myofibers spontaneously align and self-organise into higher-order myofiber bundles, which grow and consolidate to stable sizes. Following a transcriptional boost of sarcomeric components, myofibrils assemble into chains of periodic sarcomeres that emerge across the entire myofiber. By directly probing tension we found that tension build-up precedes sarcomere assembly and increases within each assembling myofibril. Furthermore, we found that myofiber ends stably attach to other myofibers using integrin-based attachments and thus myofiber bundling coincides with stable myofiber bundle attachment in vitro. A failure in stable myofiber attachment results in a collapse followed by a disassembly of the myofibrils. Overall, our results strongly suggest that mechanical tension across sarcomeric components as well as between differentiating myofibers is key to coordinate the multi-scale self-organisation of muscle morphogenesis.


2021 ◽  
Author(s):  
Ines J Marques ◽  
Alexander Ernst ◽  
Prateek Arora ◽  
Andrej Vianin ◽  
Tanja Hetke ◽  
...  

During cardiac development, cells from the precardiac mesoderm fuse to form the primordial heart tube, which then grows by addition of further progenitors to the venous and arterial poles. In the zebrafish, wilms tumor 1 transcription factor a (wt1a) and b (wt1b) are expressed in the pericardial mesoderm at the venous pole of the forming heart tube. The pericardial mesoderm forms a single layered mesothelial sheet that contributes to further the growth of the myocardium, and forms the proepicardium. Proepicardial cells are subsequently transferred to the myocardial surface and give rise to the epicardium, the outer layer covering the myocardium in the adult heart. wt1a/b expression is downregulated during the transition from pericardium to myocardium, but remains high in proepicardial cells. Here we show that sustained wt1 expression impaired cardiomyocyte maturation including sarcomere assembly, ultimately affecting heart morphology and cardiac function. ATAC-seq data analysis of cardiomyocytes overexpressing wt1 revealed that chromatin regions associated with myocardial differentiation genes remain closed upon wt1b overexpression in cardiomyocytes, suggesting that wt1 represses a myocardial differentiation program. Indeed, a subset of wt1a/b-expressing cardiomyocytes changed their cell adhesion properties, delaminated from the myocardial epithelium, and upregulated the expression of epicardial genes, as confirmed by in vivo imaging. Thus, we conclude that wt1 acts as a break for cardiomyocyte differentiation by repressing chromatin opening at specific genomic loci and that sustained ectopic expression of wt1 in cardiomyocytes can lead to their transformation into epicardial cells.


PLoS Biology ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. e3001148
Author(s):  
Julius Kostan ◽  
Miha Pavšič ◽  
Vid Puž ◽  
Thomas C. Schwarz ◽  
Friedel Drepper ◽  
...  

Sarcomeres, the basic contractile units of striated muscle cells, contain arrays of thin (actin) and thick (myosin) filaments that slide past each other during contraction. The Ig-like domain-containing protein myotilin provides structural integrity to Z-discs—the boundaries between adjacent sarcomeres. Myotilin binds to Z-disc components, including F-actin and α-actinin-2, but the molecular mechanism of binding and implications of these interactions on Z-disc integrity are still elusive. To illuminate them, we used a combination of small-angle X-ray scattering, cross-linking mass spectrometry, and biochemical and molecular biophysics approaches. We discovered that myotilin displays conformational ensembles in solution. We generated a structural model of the F-actin:myotilin complex that revealed how myotilin interacts with and stabilizes F-actin via its Ig-like domains and flanking regions. Mutant myotilin designed with impaired F-actin binding showed increased dynamics in cells. Structural analyses and competition assays uncovered that myotilin displaces tropomyosin from F-actin. Our findings suggest a novel role of myotilin as a co-organizer of Z-disc assembly and advance our mechanistic understanding of myotilin’s structural role in Z-discs.


2021 ◽  
Vol 8 (2) ◽  
pp. 10
Author(s):  
Celine F. Santiago ◽  
Inken G. Huttner ◽  
Diane Fatkin

Dilated cardiomyopathy (DCM) is a common heart muscle disorder characterized by ventricular dilation and contractile dysfunction that is associated with significant morbidity and mortality. New insights into disease mechanisms and strategies for treatment and prevention are urgently needed. Truncating variants in the TTN gene, which encodes the giant sarcomeric protein titin (TTNtv), are the most common genetic cause of DCM, but exactly how TTNtv promote cardiomyocyte dysfunction is not known. Although rodent models have been widely used to investigate titin biology, they have had limited utility for TTNtv-related DCM. In recent years, zebrafish (Danio rerio) have emerged as a powerful alternative model system for studying titin function in the healthy and diseased heart. Optically transparent embryonic zebrafish models have demonstrated key roles of titin in sarcomere assembly and cardiac development. The increasing availability of sophisticated imaging tools for assessment of heart function in adult zebrafish has revolutionized the field and opened new opportunities for modelling human genetic disorders. Genetically modified zebrafish that carry a human A-band TTNtv have now been generated and shown to spontaneously develop DCM with age. This zebrafish model will be a valuable resource for elucidating the phenotype modifying effects of genetic and environmental factors, and for exploring new drug therapies.


2020 ◽  
Author(s):  
Julius Kostan ◽  
Miha Pavšič ◽  
Vid Puž ◽  
Thomas C. Schwarz ◽  
Friedel Drepper ◽  
...  

AbstractSarcomeres, the basic contractile units of striated muscle cells, contain arrays of thin (actin) and thick (myosin) filaments that slide past each other during contraction. The Ig-like domain containing protein myotilin provides structural integrity to Z-discs - the boundaries between adjacent sarcomeres. Myotilin binds to Z-disc components, including F-actin and α-actinin-2, but the molecular mechanism of binding and implications of these interactions on Z-disc integrity are still elusive. We used a combination of small angle X-ray scattering, cross-linking mass spectrometry, biochemical and molecular biophysics approaches. We discovered that myotilin displays conformational ensembles in solution. We generated a structural model of the F-actin:myotilin complex that revealed how myotilin interacts with and stabilizes F-actin via its Ig-like domains and flanking regions. Mutant myotilin designed with impaired F-actin binding showed increased dynamics in cells. Structural analyses and competition assays uncovered that myotilin displaces tropomyosin from F-actin. Our findings suggest a novel role of myotilin as a co-organizer of Z-disc assembly and advance our mechanistic understanding of myotilin’s structural role in Z-discs.Significance StatementSarcomeres are the primary structural and functional unit of striated muscles, conferring movement in all animals. The Z-disk is the boundary between adjacent sarcomeres, where actin filaments (F-actin) are anchored. Z-disc protein myotilin, is a scaffold protein, which provides structural integrity to the Z-disc by multiple interactions to its central components, including F-actin and α-actinin-2. Here we provide the structure of myotilin, revealing its structural plasticity in solution and the first integrative structural model of its complex with F-actin. We further show that myotilin displaces tropomyosin from F-actin, implying a novel role of myotilin in sarcomere biogenesis beyond being an interaction hub for Z-disk partners.Highlights፧Myotilin is structurally described as a dynamic ensemble፧Flanking regions enhance F-acting binding to tandem Ig domains፧Integrative structural model of myotilin bound to F-actin፧Myotilin displaces tropomyosin from F-actin, suggesting an organisational role in Z-disc


2020 ◽  
Vol 21 (19) ◽  
pp. 7010
Author(s):  
Qiaoqin Liang ◽  
Mengxin Cai ◽  
Jiaqi Zhang ◽  
Wei Song ◽  
Wanyu Zhu ◽  
...  

Pathological remodeling is the main detrimental complication after myocardial infarction (MI). Overproduction of reactive oxygen species (ROS) in infarcted myocardium may contribute to this process. Adequate exercise training after MI may reduce oxidative stress-induced cardiac tissue damage and remodeling. SET and MYND domain containing 1 (Smyd1) is a muscle-specific histone methyltransferase which is upregulated by resistance training, may strengthen sarcomere assembly and myofiber folding, and may promote skeletal muscles growth and hypertrophy. However, it remains elusive if Smyd1 has similar functions in post-MI cardiac muscle and participates in exercise-induced cardioprotection. Accordingly, we investigated the effects of interval treadmill exercise on cardiac function, ROS generation, Smyd1 expression, and sarcomere assembly of F-actin in normal and infarcted hearts. Adult male rats were randomly divided into five groups (n = 10/group): control (C), exercise alone (EX), sham-operated (S), MI induced by permanent ligation of left anterior descending coronary artery (MI), and MI with interval exercise training (MI + EX). Exercise training significantly improved post-MI cardiac function and sarcomere assembly of F-actin. The cardioprotective effects were associated with increased Smyd1, Trx1, cTnI, and α-actinin expression as well as upregulated ratio of phosphorylated AMP-activated protein kinase (AMPK)/AMPK, whereas Hsp90, MuRF1, brain natriuretic peptide (BNP) expression, ROS generation, and myocardial fibrosis were attenuated. The improved post-MI cardiac function was associated with increased Smyd1 expression. In cultured H9C2 cardiomyoblasts, in vitro treatment with H2O2 (50 µmol/L) or AMP-activated protein kinase (AMPK) agonist (AICAR, 1 mmol/L) or their combination for 4 h simulated the effects of exercise on levels of ROS and Smyd1. In conclusion, we demonstrated a novel role of Smyd1 in association with post-MI exercise-induced cardioprotection. The moderate level of ROS-induced upregulation of Smyd1 may be an important target for modulating post-MI cardiac function and remodeling.


2020 ◽  
Vol 250 (1) ◽  
pp. 60-73 ◽  
Author(s):  
Nagaraju Dhanyasi ◽  
K. VijayRaghavan ◽  
Ben‐Zion Shilo ◽  
Eyal D. Schejter

2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Christopher Solís ◽  
R John Solaro ◽  
Chad M Warren ◽  
Brenda Russell

Cardiac function mainly depends on the total myocyte mass in the ventricles. Assembly and disassembly of sarcomeres occurs to adjust this mass to altered mechanical demand. In the heart, hypertrophic cardiomyopathy results from myofibrillar assembly controlled by post-translational modification of proteins directed by signaling pathways. More is known about assembly on loading than disassembly on unloading. Here, the hypothesis tested is that unloading of mechanical forces affects acetylation (Ac) and ubiquitination (Ub) of the actin-binding proteins, α-actinin and CapZ. Omecamtiv mecarbil (0.5 μM) and mavacamten (1 μM) were used to increase (load) and decrease (unload) cardiomyocyte tension, respectively, via their action on myosin ATPase. Mavacamten decreased myocyte contractility in rat ventricular myocytes (NRVMs) and caused significant sarcomere disassembly by 6 h and 70% atrophy by 24 h. Assembly was preserved with omecamtiv mecarbil (0.5 μM) over the 24 h time period. Post-translational modification was determined in loaded and unloaded NRVMs at 6 h of drug treatment. Bottom-up mass spectrometry analysis showed single residues in α-actinin and CapZ that were acetylated or ubiquitinated. Acetylation levels appeared to increase in the mavacamten-treated samples while these levels are preserved in untreated and omecamtiv mecarbil-treated samples. Ac and Ub in the Z-discs were quantified on immunofluorescent images. The Z-discs colocalized oligo-Ub (K-48 oligo-Ub linkage) and Ac in untreated samples; this Z-disc localization of Ub and Ac was diminished with unloading. Fluorescence recovery after photobleaching (FRAP) measurements of the dynamics of α-actinin and CapZ after reduced cell tension with mavacamten (1 μM) and omecamtiv mercabil (0.5 μM) are ongoing. Overall, results suggest sarcomere assembly is regulated by mechanical forces through a mechanism involving Ac and Ub of myofibrillar proteins. These findings could have consequences for cardiac heart disease with abnormal sarcomeric proteostasis.


Sign in / Sign up

Export Citation Format

Share Document