scholarly journals The C Terminus of Peripherin/rds Participates in Rod Outer Segment Targeting and Alignment of Disk Incisures

2004 ◽  
Vol 15 (4) ◽  
pp. 2027-2037 ◽  
Author(s):  
Beatrice M. Tam ◽  
Orson L. Moritz ◽  
David S. Papermaster

Protein targeting is essential for domain specialization in polarized cells. In photoreceptors, three distinct membrane domains exist in the outer segment: plasma membrane, disk lamella, and disk rim. Peripherin/retinal degeneration slow (rds) and rom-1 are photoreceptor-specific members of the transmembrane 4 superfamily of transmembrane proteins, which participate in disk morphogenesis and localize to rod outer segment (ROS) disk rims. We examined the role of their C termini in targeting by generating transgenic Xenopus laevis expressing green fluorescent protein (GFP) fusion proteins. A GFP fusion containing residues 317-336 of peripherin/rds localized uniformly to disk membranes. A longer fusion (residues 307-346) also localized to the ROS but exhibited higher affinity for disk rims than disk lamella. In contrast, the rom-1 C terminus did not promote ROS localization. The GFP-peripherin/rds fusion proteins did not immunoprecipitate with peripherin/rds or rom-1, suggesting this region does not form intermolecular interactions and is not involved in subunit assembly. Presence of GFP-peripherin/rds fusions correlated with disrupted incisures, disordered ROS tips, and membrane whorls. These abnormalities may reflect competition of the fusion proteins for other proteins that interact with peripherin/rds. This work describes novel roles for the C terminus of peripherin/rds in targeting and maintaining ROS structure and its potential involvement in inherited retinal degenerations.

2018 ◽  
Vol 96 (5) ◽  
pp. 459-470 ◽  
Author(s):  
Xavier Charest-Morin ◽  
Robert Lodge ◽  
François Marceau

To support bradykinin (BK) B2 receptor (B2R) detection and therapeutic stimulation, we developed and characterized fusion proteins consisting of the BK homolog maximakinin (MK), or variants, positioned at the C-terminus of functional proteins (enhanced green fluorescent protein (EGFP), the peroxidase APEX2, or human serum albumin (HSA)). EGFP-MK loses its reactivity with anti-BK antibodies and molecular mass as it progresses in the endosomal tract of cells expressing rat B2Rs (immunoblots, epifluorescence microscopy). APEX2-(NG)15-MK is a bona fide agonist of the rat, but not of the human B2R (calcium and c-Fos signaling) and is compatible with the cytochemistry reagent TrueBlue (microscopy), a luminol-based reagent, or 3,3′,5,5′-tetramethylbenzidine (luminescence or colourimetric B2R detection, cell well plate format). APEX2-(NG)15-MK is a non-isotopic ligand suitable for drug discovery via binding competition. Affinity-purified secreted forms of HSA fused with peptides possessing the C-terminal MK or BK sequence failed to stimulate the rat B2R in the concentration range of 50–600 nmol/L. However, the non-secreted construction myc-HSA-MK is a B2R agonist, indicating that protein denaturation made the C-terminal sequence available for receptor binding. Fusion protein ligands of the B2R are stable but subjected to slow intracellular inactivation, strong species specificity, and possible steric hindrance between the receptor and large proteins.


2000 ◽  
Vol 151 (7) ◽  
pp. 1369-1380 ◽  
Author(s):  
Beatrice M. Tam ◽  
Orson L. Moritz ◽  
Lawrence B. Hurd ◽  
David S. Papermaster

Mislocalization of the photopigment rhodopsin may be involved in the pathology of certain inherited retinal degenerative diseases. Here, we have elucidated rhodopsin's targeting signal which is responsible for its polarized distribution to the rod outer segment (ROS). Various green fluorescent protein (GFP)/rhodopsin COOH-terminal fusion proteins were expressed specifically in the major red rod photoreceptors of transgenic Xenopus laevis under the control of the Xenopus opsin promoter. The fusion proteins were targeted to membranes via lipid modifications (palmitoylation and myristoylation) as opposed to membrane spanning domains. Membrane association was found to be necessary but not sufficient for efficient ROS localization. A GFP fusion protein containing only the cytoplasmic COOH-terminal 44 amino acids of Xenopus rhodopsin localized exclusively to ROS membranes. Chimeras between rhodopsin and α adrenergic receptor COOH-terminal sequences further refined rhodopsin's ROS localization signal to its distal eight amino acids. Mutations/deletions of this region resulted in partial delocalization of the fusion proteins to rod inner segment (RIS) membranes. The targeting and transport of endogenous wild-type rhodopsin was unaffected by the presence of mislocalized GFP fusion proteins.


2009 ◽  
Vol 102 (11) ◽  
pp. 925-935 ◽  
Author(s):  
Stefan Heinz ◽  
Jörg Schüttrumpf ◽  
Jeremy Simpson ◽  
Rainer Pepperkok ◽  
Gerry Nicolaes ◽  
...  

SummaryConsidering the difficulty in detecting factor (F)VIII in vivo, fluorescently labelled FVIII protein provides a tool to analyse the intracellular localisation, bio distribution, and pharmacokinetics of the protein in living organisms. Here, we report the use of FVIII full length and B-domain deleted proteins, fused to enhanced green fluorescent protein (eGFP) at the C-terminus of the coagulation protein via a nine amino acid spanning linker. Comparison of the FVIII-eGFP fusion proteins to their unlabelled counterparts showed no impairment with respect to recombinant expression levels, intracellular processing, specific coagulant activity and decay at physiological temperature. Confocal live cell imaging demonstrated ER-Golgi-transport of B-domain deleted FVIII-eGFP in vesicular tubular carriers. Using temperature blocks and release experiments, imaging of FVIII-eGFP fusion proteins enabled for the first time the visualisation of the early secretory pathway of B-domain deleted FVIII in living cells and in particular highlighted the apparent deficit of active transport carriers, an observation consistent with the low rates of FVIII secretion seen in recombinant expression systems.


2008 ◽  
Vol 294 (3) ◽  
pp. F562-F570 ◽  
Author(s):  
Vani Nilakantan ◽  
Cheryl Maenpaa ◽  
Guangfu Jia ◽  
Richard J. Roman ◽  
Frank Park

20-HETE, a metabolite of arachidonic acid, has been implicated as a mediator of free radical formation and tissue death following ischemia-reperfusion (IR) injury in the brain and heart. The present study examined the role of this pathway in a simulated IR renal injury model in vitro. Modified self-inactivating lentiviral vectors were generated to stably overexpress murine Cyp4a12 following transduction into LLC-PK1 cells (LLC-Cyp4a12). We compared the survival of control and transduced LLC-PK1 cells following 4 h of ATP depletion and 2 h of recovery in serum-free medium. ATP depletion-recovery of LLC-Cyp4a12 cells resulted in a significantly higher LDH release ( P < 0.05) compared with LLC-enhanced green fluorescent protein (EGFP) cells. Treatment with the SOD mimetic MnTMPyP (100 μM) resulted in decreased cytotoxicity in LLC-Cyp4a12 cells. The selective 20-HETE inhibitor HET-0016 (10 μM) also inhibited cytotoxicity significantly ( P < 0.05) in LLC-Cyp4a12 cells. Dihydroethidium fluorescence showed that superoxide levels were increased to the same degree in LLC-EGFP and LLC-Cyp4a12 cells after ATP depletion-recovery compared with control cells and that this increase was inhibited by MnTMPyP. There was a significant increase ( P < 0.05) of caspase-3 cleavage, an effector protease of the apoptotic pathway, in the LLC-Cyp4a12 vs. LLC-EGFP cells ( P < 0.05). This was abolished in the presence of HET-0016 ( P < 0.05) or MnTMPyP ( P < 0.01). These results demonstrate that 20-HETE overexpression can significantly exacerbate the cellular damage that is associated with renal IR injury and that the programmed cell death is mediated by activation of caspase-3 and is partially dependent on enhanced CYP4A generation of free radicals.


2000 ◽  
Vol 74 (23) ◽  
pp. 11339-11346 ◽  
Author(s):  
Vitaly Boyko ◽  
Jessica van der Laak ◽  
Jacqueline Ferralli ◽  
Elena Suslova ◽  
Myoung-Ok Kwon ◽  
...  

ABSTRACT Intercellular transport of tobacco mosaic virus (TMV) RNA involves the accumulation of virus-encoded movement protein (MP) in plasmodesmata (Pd), in endoplasmic reticulum (ER)-derived inclusion bodies, and on microtubules. The functional significance of these interactions in viral RNA (vRNA) movement was tested in planta and in protoplasts with TMV derivatives expressing N- and C-terminal deletion mutants of MP fused to the green fluorescent protein. Deletion of 55 amino acids from the C terminus of MP did not interfere with the vRNA transport function of MP:GFP but abolished its accumulation in inclusion bodies, indicating that accumulation of MP at these ER-derived sites is not a requirement for function in vRNA intercellular movement. Deletion of 66 amino acids from the C terminus of MP inactivated the protein, and viral infection occurred only upon complementation in plants transgenic for MP. The functional deficiency of the mutant protein correlated with its inability to associate with microtubules and, independently, with its absence from Pd at the leading edge of infection. Inactivation of MP by N-terminal deletions was correlated with the inability of the protein to target Pd throughout the infection site, whereas its associations with microtubules and inclusion bodies were unaffected. The observations support a role of MP-interacting microtubules in TMV RNA movement and indicate that MP targets microtubules and Pd by independent mechanisms. Moreover, accumulation of MP in Pd late in infection is insufficient to support viral movement, confirming that intercellular transport of vRNA relies on the presence of MP in Pd at the leading edge of infection.


1999 ◽  
Vol 19 (12) ◽  
pp. 8191-8200 ◽  
Author(s):  
Philippe Bastin ◽  
Thomas H. MacRae ◽  
Susan B. Francis ◽  
Keith R. Matthews ◽  
Keith Gull

ABSTRACT The paraflagellar rod (PFR) of the African trypanosomeTrypanosoma brucei represents an excellent model to study flagellum assembly. The PFR is an intraflagellar structure present alongside the axoneme and is composed of two major proteins, PFRA and PFRC. By inducible expression of a functional epitope-tagged PFRA protein, we have been able to monitor PFR assembly in vivo. As T. brucei cells progress through their cell cycle, they possess both an old and a new flagellum. The induction of expression of tagged PFRA in trypanosomes growing a new flagellum provided an excellent marker of newly synthesized subunits. This procedure showed two different sites of addition: a major, polar site at the distal tip of the flagellum and a minor, nonpolar site along the length of the partially assembled PFR. Moreover, we have observed turnover of epitope-tagged PFRA in old flagella that takes place throughout the length of the PFR structure. Expression of truncated PFRA mutant proteins identified a sequence necessary for flagellum localization by import or binding. This sequence was not sufficient to confer full flagellum localization to a green fluorescent protein reporter. A second sequence, necessary for the addition of PFRA protein to the distal tip, was also identified. In the absence of this sequence, the mutant PFRA proteins were localized both in the cytosol and in the flagellum where they could still be added along the length of the PFR. This seven-amino-acid sequence is conserved in all PFRA and PFRC proteins and shows homology to a sequence in the flagellar dynein heavy chain of Chlamydomonas reinhardtii.


Biochemistry ◽  
2005 ◽  
Vol 44 (49) ◽  
pp. 16211-16220 ◽  
Author(s):  
Timothy I. Wood ◽  
David P. Barondeau ◽  
Chiharu Hitomi ◽  
Carey J. Kassmann ◽  
John A. Tainer ◽  
...  

2000 ◽  
Vol 11 (10) ◽  
pp. 3469-3484 ◽  
Author(s):  
Jean Monnat ◽  
Eva M. Neuhaus ◽  
Marius S. Pop ◽  
David M. Ferrari ◽  
Barbara Kramer ◽  
...  

Localization of soluble endoplasmic reticulum (ER) resident proteins is likely achieved by the complementary action of retrieval and retention mechanisms. Whereas the machinery involving the H/KDEL and related retrieval signals in targeting escapees back to the ER is well characterized, other mechanisms including retention are still poorly understood. We have identified a protein disulfide isomerase (Dd-PDI) lacking the HDEL retrieval signal normally found at the C terminus of ER residents in Dictyostelium discoideum. Here we demonstrate that its 57 residue C-terminal domain is necessary for intracellular retention of Dd-PDI and sufficient to localize a green fluorescent protein (GFP) chimera to the ER, especially to the nuclear envelope. Dd-PDI and GFP-PDI57 are recovered in similar cation-dependent complexes. The overexpression of GFP-PDI57 leads to disruption of endogenous PDI complexes and induces the secretion of PDI, whereas overexpression of a GFP-HDEL chimera induces the secretion of endogenous calreticulin, revealing the presence of two independent and saturable mechanisms. Finally, low-level expression of Dd-PDI but not of PDI truncated of its 57 C-terminal residues complements the otherwise lethal yeast TRG1/PDI1 null mutation, demonstrating functional disulfide isomerase activity and ER localization. Altogether, these results indicate that the PDI57 peptide contains ER localization determinants recognized by a conserved machinery present in D. discoideum and Saccharomyces cerevisiae.


Sign in / Sign up

Export Citation Format

Share Document