Exploration of the role of the subodontoblastic layer in odontoblast-like cell differentiation after tooth drilling using Nestin-enhanced green fluorescent protein transgenic mice

Author(s):  
Chihiro Imai ◽  
Hiroto Sano ◽  
Angela Quispe-Salcedo ◽  
Kotaro Saito ◽  
Mitsushiro Nakatomi ◽  
...  
2006 ◽  
Vol 27 (3) ◽  
pp. 391-397 ◽  
Author(s):  
Yvonne N. Tallini ◽  
Bo Shui ◽  
Kai Su Greene ◽  
Ke-Yu Deng ◽  
Robert Doran ◽  
...  

The peripheral nervous system has complex and intricate ramifications throughout many target organ systems. To date this system has not been effectively labeled by genetic markers, due largely to inadequate transcriptional specification by minimum promoter constructs. Here we describe transgenic mice in which enhanced green fluorescent protein (eGFP) is expressed under the control of endogenous choline acetyltransferase (ChAT) transcriptional regulatory elements, by knock-in of eGFP within a bacterial artificial chromosome (BAC) spanning the ChAT locus and expression of this construct as a transgene. eGFP is expressed in ChATBAC-eGFP mice in central and peripheral cholinergic neurons, including cell bodies and processes of the somatic motor, somatic sensory, and parasympathetic nervous system in gastrointestinal, respiratory, urogenital, cardiovascular, and other peripheral organ systems. Individual epithelial cells and a subset of lymphocytes within the gastrointestinal and airway mucosa are also labeled, indicating genetic evidence of acetylcholine biosynthesis. Central and peripheral neurons were observed as early as 10.5 days postcoitus in the developing mouse embryo. ChATBAC-eGFP mice allow excellent visualization of all cholinergic elements of the peripheral nervous system, including the submucosal enteric plexus, preganglionic autonomic nerves, and skeletal, cardiac, and smooth muscle neuromuscular junctions. These mice should be useful for in vivo studies of cholinergic neurotransmission and neuromuscular coupling. Moreover, this genetic strategy allows the selective expression and conditional inactivation of genes of interest in cholinergic nerves of the central nervous system and peripheral nervous system.


2001 ◽  
Vol 17 (3) ◽  
pp. 83-85 ◽  
Author(s):  
Masahiro Sato ◽  
Toshiteru Watanabe ◽  
Akiko Oshida ◽  
Ayako Nagashima ◽  
Jun-ichi Miyazaki ◽  
...  

Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1547
Author(s):  
Anastasia V. Mamontova ◽  
Aleksander M. Shakhov ◽  
Konstantin A. Lukyanov ◽  
Alexey M. Bogdanov

The bright ultimately short lifetime enhanced emitter (BrUSLEE) green fluorescent protein, which differs from the enhanced green fluorescent protein (EGFP) in three mutations, exhibits an extremely short fluorescence lifetime at a relatively high brightness. An important contribution to shortening the BrUSLEE fluorescence lifetime compared to EGFP is provided by the T65G substitution of chromophore-forming residue and the Y145M mutation touching the chromophore environment. Although the influence of the T65G mutation was studied previously, the role of the 145th position in determining the GFPs physicochemical characteristics remains unclear. In this work, we show that the Y145M substitution, both alone and in combination with the F165Y mutation, does not shorten the fluorescence lifetime of EGFP-derived mutants. Thus, the unlocking of Y145M as an important determinant of lifetime tuning is possible only cooperatively with mutations at position 65. We also show here that the introduction of a T65G substitution into EGFP causes complex photobehavior of the respective mutants in the lifetime domain, namely, the appearance of two fluorescent states with different lifetimes, preserved in any combination with the Y145M and F165Y substitutions.


Sign in / Sign up

Export Citation Format

Share Document