scholarly journals Rab14 Is Involved in Membrane Trafficking between the Golgi Complex and Endosomes

2004 ◽  
Vol 15 (5) ◽  
pp. 2218-2229 ◽  
Author(s):  
Jagath R. Junutula ◽  
Ann M. De Maziére ◽  
Andrew A. Peden ◽  
Karen E. Ervin ◽  
Raj J. Advani ◽  
...  

Rab GTPases are localized to various intracellular compartments and are known to play important regulatory roles in membrane trafficking. Here, we report the subcellular distribution and function of Rab14. By immunofluorescence and immunoelectron microscopy, both endogenous as well as overexpressed Rab14 were localized to biosynthetic (rough endoplasmic reticulum, Golgi, and trans-Golgi network) and endosomal compartments (early endosomal vacuoles and associated vesicles). Notably overexpression of Rab14Q70L shifted the distribution toward the early endosome associated vesicles, whereas the S25N and N124I mutants induced a shift toward the Golgi region. A similar, although less pronounced, redistribution of the transferrin receptor was also observed in cells overexpressing Rab14 mutants. Impairment of Rab14 function did not however affect transferrin uptake or recycling kinetics. Together, these findings suggest that Rab14 is involved in the biosynthetic/recycling pathway between the Golgi and endosomal compartments.

2021 ◽  
pp. mbc.E20-10-0664
Author(s):  
Laura L. Thomas ◽  
Carolyn M. Highland ◽  
J. Christopher Fromme

Rab family GTPases are key organizers of membrane trafficking and function as markers of organelle identity. Accordingly, Rab GTPases often occupy specific membrane domains and mechanisms exist to prevent the inappropriate mixing of distinct Rab domains. The yeast Golgi complex can be divided into two broad Rab domains: Ypt1 (Rab1) and Ypt6 (Rab6) are present at the early/medial Golgi and sharply transition to Ypt31/32 (Rab11) at the late Golgi/ trans-Golgi network (TGN). This Rab conversion has been attributed to GAP cascades in which Ypt31/32 recruits the Rab-GAPs Gyp1 and Gyp6 to inactivate Ypt1 and Ypt6, respectively. Here we report that Rab transition at the TGN involves additional layers of regulation. We provide new evidence confirming the TRAPPII complex as an important regulator of Ypt6 inactivation and uncover an unexpected role of the Arf1 GTPase in recruiting Gyp1 to drive Ypt1 inactivation at the TGN. Given its established role in directly recruiting TRAPPII to the TGN, Arf1 is therefore a master regulator of Rab conversion on maturing Golgi compartments.


2019 ◽  
Vol 31 (8) ◽  
pp. 1879-1898 ◽  
Author(s):  
Michel Ruiz Rosquete ◽  
Natasha Worden ◽  
Guangxi Ren ◽  
Rosalie M. Sinclair ◽  
Sina Pfleger ◽  
...  

2001 ◽  
Vol 114 (19) ◽  
pp. 3413-3418 ◽  
Author(s):  
Annette L. Boman

The GGA proteins are a novel family of proteins that were discovered nearly simultaneously by several labs studying very different aspects of membrane trafficking. Since then, several studies have described the GGA proteins and their functions in yeast and mammalian cells. Four protein domains are present in all GGA proteins, as defined by sequence homology and function. These different domains interact directly with ARF proteins, cargo and clathrin. Alteration of the levels of GGA proteins by gene knockout or overexpression affects specific trafficking events between the trans-Golgi network and endosomes. These data suggest that GGAs function as ARF-dependent, monomeric clathrin adaptors to facilitate cargo sorting and vesicle formation at the trans-Golgi network.


2010 ◽  
Vol 191 (2) ◽  
pp. 367-381 ◽  
Author(s):  
Shin-ichiro Yoshimura ◽  
Andreas Gerondopoulos ◽  
Andrea Linford ◽  
Daniel J. Rigden ◽  
Francis A. Barr

A key requirement for Rab function in membrane trafficking is site-specific activation by GDP-GTP exchange factors (GEFs), but the majority of the 63 human Rabs have no known GEF. We have performed a systematic characterization of the 17 human DENN domain proteins and demonstrated that they are specific GEFs for 10 Rabs. DENND1A/1B localize to clathrin patches at the plasma membrane and activate Rab35 in an endocytic pathway trafficking Shiga toxin to the trans-Golgi network. DENND2 GEFs target to actin filaments and control Rab9-dependent trafficking of mannose-6-phosphate receptor to lysosomes. DENND4 GEFs target to a tubular membrane compartment adjacent to the Golgi, where they activate Rab10, which suggests a function in basolateral polarized sorting in epithelial cells that compliments the non-DENN GEF Sec2 acting on Rab8 in apical sorting. DENND1C, DENND3, DENND5A/5B, MTMR5/13, and MADD activate Rab13, Rab12, Rab39, Rab28, and Rab27A/27B, respectively. Together, these findings provide a basis for future studies on Rab regulation and function.


2020 ◽  
Author(s):  
Friederike E. Kohrs ◽  
Ilsa-Maria Daumann ◽  
Bojana Pavlović ◽  
Eugene Jennifer Jin ◽  
Shih-Ching Lin ◽  
...  

SummaryRab GTPases are molecular switches that regulate membrane trafficking in all cells. Neurons have particular demands on membrane trafficking and express numerous Rab GTPases of unknown function. Here we report the generation and characterization of molecularly defined null mutants for all 26 rab genes in Drosophila. In addition, we created a transgenic fly collection for the acute, synchronous release system RUSH for all 26 Rabs. In flies, all rab genes are expressed in the nervous system where at least half exhibit particularly high levels compared to other tissues. Surprisingly, loss of any of these 13 nervous-system enriched Rabs yields viable and fertile flies without obvious morphological defects. However, 9 of these 13 affect either developmental timing when challenged with different temperatures, or neuronal function when challenged with continuous stimulation. These defects are non-lethal under laboratory conditions, but represent sensitized genetic backgrounds that reveal limits of developmental and functional robustness to environmental challenges. Interestingly, the neuronal rab26 was previously proposed to function in synaptic maintenance by linking autophagy and synaptic vesicle recycling and we identified rab26 as one of six rab mutants with reduced synaptic function under continuous stimulation conditions. However, we found no changes to autophagy or synaptic vesicle markers in the rab26 mutant, but instead a cell-specific role in membrane receptor turnover associated with cholinergic synapses in the fly visual system. Our systematic functional analyses suggest that several Rabs ensure robust development and function under varying environmental conditions. The mutant and transgenic fly collections generated in this study provide a basis for further studies of Rabs during development and homeostasis in vivo.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Friederike E Kohrs ◽  
Ilsa-Maria Daumann ◽  
Bojana Pavlovic ◽  
Eugene Jennifer Jin ◽  
F Ridvan Kiral ◽  
...  

Rab GTPases are molecular switches that regulate membrane trafficking in all cells. Neurons have particular demands on membrane trafficking and express numerous Rab GTPases of unknown function. Here, we report the generation and characterization of molecularly defined null mutants for all 26 rab genes in Drosophila. In flies, all rab genes are expressed in the nervous system where at least half exhibit particularly high levels compared to other tissues. Surprisingly, loss of any of these 13 nervous system-enriched Rabs yielded viable and fertile flies without obvious morphological defects. However, all 13 mutants differentially affected development when challenged with different temperatures, or neuronal function when challenged with continuous stimulation. We identified a synaptic maintenance defect following continuous stimulation for six mutants, including an autophagy-independent role of rab26. The complete mutant collection generated in this study provides a basis for further comprehensive studies of Rab GTPases during development and function in vivo.


2007 ◽  
Vol 178 (3) ◽  
pp. 363-369 ◽  
Author(s):  
Shin-ichiro Yoshimura ◽  
Johannes Egerer ◽  
Evelyn Fuchs ◽  
Alexander K. Haas ◽  
Francis A. Barr

Primary cilia are sensory structures involved in morphogen signalling during development, liquid flow in the kidney, mechanosensation, sight, and smell (Badano, J.L., N. Mitsuma, P.L. Beales, and N. Katsanis. 2006. Annu. Rev. Genomics Hum. Genet. 7:125–148; Singla, V., and J.F. Reiter. 2006. Science. 313:629–633.). Mutations that affect primary cilia are responsible for several diseases, including neural tube defects, polycystic kidney disease, retinal degeneration, and cancers (Badano et al., 2006; Singla and Reiter, 2006). Primary cilia formation and function requires tight integration of the microtubule cytoskeleton with membrane trafficking (Singla and Reiter, 2006), and this is poorly understood. We show that the Rab GTPase membrane trafficking regulators Rab8a, -17, and -23, and their cognate GTPase-activating proteins (GAPs), XM_037557, TBC1D7, and EVI5like, are involved in primary cilia formation. However, other human Rabs and GAPs are not. Additionally, Rab8a specifically interacts with cenexin/ODF2, a basal body and microtubule binding protein required for cilium biogenesis (Ishikawa, H., A. Kubo, S. Tsukita, and S. Tsukita. 2005. Nat. Cell Biol. 7:517–524), and is the sole Rab enriched at primary cilia. These findings provide a basis for understanding how specific membrane trafficking pathways cooperate with the microtubule cytoskeleton to give rise to the primary cilia.


2020 ◽  
Vol 21 (3) ◽  
pp. 1064 ◽  
Author(s):  
Sonya Nassari ◽  
Tomas Del Olmo ◽  
Steve Jean

Rab GTPases play key roles in various cellular processes. They are essential, among other roles, to membrane trafficking and intracellular signaling events. Both trafficking and signaling events are crucial for proper embryonic development. Indeed, embryogenesis is a complex process in which cells respond to various signals and undergo dramatic changes in their shape, position, and function. Over the last few decades, cellular studies have highlighted the novel signaling roles played by Rab GTPases, while numerous studies have shed light on the important requirements of Rab proteins at various steps of embryonic development. In this review, we aimed to generate an overview of Rab contributions during animal embryogenesis. We first briefly summarize the involvement of Rabs in signaling events. We then extensively highlight the contribution of Rabs in shaping metazoan development and conclude with new approaches that will allow investigation of Rab functions in vivo.


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Daniel Walter McKay ◽  
Heather E McFarlane ◽  
Yue Qu ◽  
Apriadi Situmorang ◽  
Matthew Gilliham ◽  
...  

Plant cells maintain a low luminal pH in the Trans-Golgi-Network/Early Endosome (TGN/EE), the organelle in which the secretory and endocytic pathways intersect. Impaired TGN/EE pH regulation translates into severe plant growth defects. The identity of the proton pump and proton/ion antiporters that regulate TGN/EE pH have been determined, but an essential component required to complete the TGN/EE membrane transport circuit remains unidentified - a pathway for cation and anion efflux. Here, we have used complementation, genetically encoded fluorescent sensors, and pharmacological treatments to demonstrate that Arabidopsis Cation Chloride Cotransporter (CCC1) is this missing component necessary for regulating TGN/EE pH and function. Loss of CCC1 function leads to alterations in TGN/EE-mediated processes including endocytic trafficking, exocytosis and response to abiotic stress, consistent with the multitude of phenotypic defects observed in ccc1 knockout plants. This discovery places CCC1 as a central component of plant cellular function.


2018 ◽  
Author(s):  
Megan T. Harris ◽  
Syed Saad Hussain ◽  
Candice M. Inouye ◽  
Anna M. Castle ◽  
J. David Castle

AbstractThe ABC transporter ABCG1 regulates intracellular cholesterol. We showed previously that ABCG1 deficiency inhibits insulin secretion by pancreatic beta cells and, based on its immunolocalization to insulin granules, proposed its essential role in forming cholesterol-enriched granule membranes. While we confirm elsewhere that ABCG1, alongside ABCA1 and oxysterol binding protein OSBP, supports insulin granule formation, the aim here is to update our localization and to provide added insight regarding ABCG1’s trafficking and sites of function. We show that stably expressed GFP-tagged ABCG1 closely mimics the distribution of endogenous ABCG1 in pancreatic INS1 cells and accumulates in the trans-Golgi network (TGN), endosomal recycling compartment (ERC) and on the cell surface but not on insulin granules, early or late endosomes. Notably, ABCG1 is short-lived, and proteasomal and lysosomal inhibitors both decrease its degradation. Following blockade of protein synthesis, GFP-ABCG1 first disappears from the ER and TGN and later from the ERC and plasma membrane. Beyond aiding granule formation, our findings raise the prospect that ABCG1 may act beyond the TGN to regulate activities involving the endocytic pathway, especially as the amount of transferrin receptor is increased in ABCGI-deficient cells. Thus, ABCG1 may function at multiple intracellular sites and the plasma membrane as a roving sensor and modulator of cholesterol distribution and membrane trafficking.


Sign in / Sign up

Export Citation Format

Share Document