scholarly journals Cis-Golgi Matrix Proteins Move Directly to Endoplasmic Reticulum Exit Sites by Association with Tubules

2006 ◽  
Vol 17 (1) ◽  
pp. 525-538 ◽  
Author(s):  
Gonzalo A. Mardones ◽  
Christopher M. Snyder ◽  
Kathryn E. Howell

The role of cis-medial Golgi matrix proteins in retrograde traffic is poorly understood. We have used imaging techniques to understand the relationship between the cis-medial Golgi matrix and transmembrane proteins during retrograde traffic in control and brefeldin A (BFA)-treated cells. All five of the cis-medial matrix proteins tested were associated with retrograde tubules within 2-3 min of initiation of tubule formation. Then, at later time points (3-10 min), transmembrane proteins are apparent in the same tubules. Strikingly, both the matrix proteins and the transmembrane proteins moved directly to endoplasmic reticulum (ER) exit sites labeled with p58 and Sec13, and there seemed to be a specific interaction between the ER exit sites and the tips or branch points of the tubules enriched for the matrix proteins. After the initial interaction, Golgi matrix proteins accumulated rapidly (5-10 min) at ER exit sites, and Golgi transmembrane proteins accumulated at the same sites ∼2 h later. Our data suggest that Golgi cis-medial matrix proteins participate in Golgi-to-ER traffic and play a novel role in tubule formation and targeting.

1995 ◽  
Vol 42 (2) ◽  
pp. 205-210 ◽  
Author(s):  
P Widłak ◽  
J Rogoliński ◽  
J Rzeszowska-Wolny

Preincubation of rat liver nuclei with copper ions influenced the stability and protein composition of the nuclear matrices isolated by a "high salt" method. Also the specific interaction between matrix proteins and the kappa Ig matrix attachment region of DNA was affected.


2003 ◽  
Vol 14 (12) ◽  
pp. 5011-5018 ◽  
Author(s):  
Sapna Puri ◽  
Adam D. Linstedt

It is unclear whether the mammalian Golgi apparatus can form de novo from the ER or whether it requires a preassembled Golgi matrix. As a test, we assayed Golgi reassembly after forced redistribution of Golgi matrix proteins into the ER. Two conditions were used. In one, ER redistribution was achieved using a combination of brefeldin A (BFA) to cause Golgi collapse and H89 to block ER export. Unlike brefeldin A alone, which leaves matrix proteins in relatively large remnant structures outside the ER, the addition of H89 to BFA-treated cells caused ER accumulation of all Golgi markers tested. In the other, clofibrate treatment induced ER redistribution of matrix and nonmatrix proteins. Significantly, Golgi reassembly after either treatment was robust, implying that the Golgi has the capacity to form de novo from the ER. Furthermore, matrix proteins reemerged from the ER with faster ER exit rates. This, together with the sensitivity of BFA remnants to ER export blockade, suggests that presence of matrix proteins in BFA remnants is due to cycling via the ER and preferential ER export rather than their stable assembly in a matrix outside the ER. In summary, the Golgi apparatus appears capable of efficient self-assembly.


2008 ◽  
Vol 19 (5) ◽  
pp. 1976-1990 ◽  
Author(s):  
Sandra Mitrovic ◽  
Houchaima Ben-Tekaya ◽  
Eva Koegler ◽  
Jean Gruenberg ◽  
Hans-Peter Hauri

Rapidly cycling proteins of the early secretory pathway can operate as cargo receptors. Known cargo receptors are abundant proteins, but it remains mysterious why their inactivation leads to rather limited secretion phenotypes. Studies of Surf4, the human orthologue of the yeast cargo receptor Erv29p, now reveal a novel function of cargo receptors. Surf4 was found to interact with endoplasmic reticulum-Golgi intermediate compartment (ERGIC)-53 and p24 proteins. Silencing Surf4 together with ERGIC-53 or silencing the p24 family member p25 induced an identical phenotype characterized by a reduced number of ERGIC clusters and fragmentation of the Golgi apparatus without effect on anterograde transport. Live imaging showed decreased stability of ERGIC clusters after knockdown of p25. Silencing of Surf4/ERGIC-53 or p25 resulted in partial redistribution of coat protein (COP) I but not Golgi matrix proteins to the cytosol and partial resistance of the cis-Golgi to brefeldin A. These findings imply that cargo receptors are essential for maintaining the architecture of ERGIC and Golgi by controlling COP I recruitment.


2014 ◽  
Vol 204 (5) ◽  
pp. 659-668 ◽  
Author(s):  
Kèvin Knoops ◽  
Selvambigai Manivannan ◽  
Małgorzata N. Cepińska ◽  
Arjen M. Krikken ◽  
Anita M. Kram ◽  
...  

We demonstrate that the peroxin Pex3 is not required for the formation of peroxisomal membrane structures in yeast pex3 mutant cells. Notably, pex3 mutant cells already contain reticular and vesicular structures that harbor key proteins of the peroxisomal receptor docking complex—Pex13 and Pex14—as well as the matrix proteins Pex8 and alcohol oxidase. Other peroxisomal membrane proteins in these cells are unstable and transiently localized to the cytosol (Pex10, Pmp47) or endoplasmic reticulum (Pex11). These reticular and vesicular structures are more abundant in cells of a pex3 atg1 double deletion strain, as the absence of Pex3 may render them susceptible to autophagic degradation, which is blocked in this double mutant. Contrary to earlier suggestions, peroxisomes are not formed de novo from the endoplasmic reticulum when the PEX3 gene is reintroduced in pex3 cells. Instead, we find that reintroduced Pex3 sorts to the preperoxisomal structures in pex3 cells, after which these structures mature into normal peroxisomes.


2003 ◽  
Vol 14 (7) ◽  
pp. 2900-2907 ◽  
Author(s):  
Hans J. Geuze ◽  
Jean Luc Murk ◽  
An K. Stroobants ◽  
Janice M. Griffith ◽  
Monique J. Kleijmeer ◽  
...  

The traditional view holds that peroxisomes are autonomous organelles multiplying by growth and division. More recently, new observations have challenged this concept. Herein, we present evidence supporting the involvement of the endoplasmic reticulum (ER) in peroxisome formation by electron microscopy, immunocytochemistry and three-dimensional image reconstruction of peroxisomes and associated compartments in mouse dendritic cells. We found the peroxisomal membrane protein Pex13p and the ATP-binding cassette transporter protein PMP70 present in specialized subdomains of the ER that were continuous with a peroxisomal reticulum from which mature peroxisomes arose. The matrix proteins catalase and thiolase were only detectable in the reticula and peroxisomes. Our results suggest the existence of a maturation pathway from the ER to peroxisomes and implicate the ER as a major source from which the peroxisomal membrane is derived.


Author(s):  
K.R. Porter

Most types of cells are known from their structure and overall form to possess a characteristic organization. In some instances this is evident in the non-random disposition of organelles and such system subunits as cisternae of the endoplasmic reticulum or the Golgi complex. In others it appears in the distribution and orientation of cytoplasmic fibrils. And in yet others the organization finds expression in the non-random distribution and orientation of microtubules, especially as found in highly anisometric cells and cell processes. The impression is unavoidable that in none of these cases is the organization achieved without the involvement of the cytoplasmic ground substance (CGS) or matrix. This impression is based on the fact that a matrix is present and that in all instances these formed structures, whether membranelimited or filamentous, are suspended in it. In some well-known instances, as in arrays of microtubules which make up axonemes and axostyles, the matrix resolves itself into bridges (and spokes) between the microtubules, bridges which are in some cases very regularly disposed and uniform in size (Mcintosh, 1973; Bloodgood and Miller, 1974; Warner and Satir, 1974).


Author(s):  
Robert Williams ◽  
Che-Hung Lee ◽  
Sara E. Quella ◽  
David M. Harlan ◽  
Yuan-Hsu Kang

Monocyte adherence to endothelial or extracellular matrices plays an important role in triggering monocyte activation in extravascular sites of infection, chronic inflammatory disorders, and tissue damage. Migration of monocytes in the tissues involves the response to a chemoattractant and movement by a series of attachments and detachments to the extracellular matrices which are regulated by expression and distribution of specific receptors for the matrix proteins such as fibronectin (FN). The VSAs (very late antigens or beta integrins), a subfamily of the transmembrane heterodimeric integrin receptors, have been thought to play a major role in monocyte adherence to the extracellular matrices and cells. In this subfamily, VLA-5 and VLA-4 are believed to be the most essential integrins mediating monocyte adherence to FN. In the present report, we have established and compared different procedures for morphological evaluation of the expression and distribution of the FN receptors on human monocytes in order to investigate their response to endotoxin or cytokine stimulation.


Virology ◽  
2004 ◽  
Vol 329 (1) ◽  
pp. 157-167 ◽  
Author(s):  
Mariana L. Manrique ◽  
Silvia A. González ◽  
José L. Affranchino

1988 ◽  
Vol 91 (1) ◽  
pp. 5-11
Author(s):  
J.B. Rattner ◽  
D.P. Bazett-Jones

Specific antibody labelling indicates that phosphoproteins are present at microtubule-organizing centres, including the centrosome. We have employed electron spectroscopic imaging techniques that permit high-resolution elemental analysis of thin sections of intact cells to investigate the precise distribution of phosphorus and therefore phosphoproteins at the centrosome of Indian muntjac cells. We report that these proteins are localized to both the pericentriolar matrix and the centriole. The matrix contains an abundance of phosphorus and is associated with microtubule elements. Within the mature centriole, major structures including the nine triplet blades and linking elements that connect adjacent blades are composed of phosphorylated proteins. In addition, phosphoproteins are abundant at the ends of the centriole, at the interface between the centriole lumen and the pericentriolar environment. From these observations we suggest that phosphoproteins may play both a structural and a functional role within the centrosome region.


Sign in / Sign up

Export Citation Format

Share Document